These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24041903)

  • 21. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases.
    Livermore DM; Chen HY
    J Antimicrob Chemother; 1997 Sep; 40(3):335-43. PubMed ID: 9338484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae.
    Ito A; Nishikawa T; Ota M; Ito-Horiyama T; Ishibashi N; Sato T; Tsuji M; Yamano Y
    J Antimicrob Chemother; 2018 Nov; 73(11):3049-3052. PubMed ID: 30188999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa.
    van Delden C; Page MG; Köhler T
    Antimicrob Agents Chemother; 2013 May; 57(5):2095-102. PubMed ID: 23422914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study.
    Cabot G; Ocampo-Sosa AA; Tubau F; Macia MD; Rodríguez C; Moya B; Zamorano L; Suárez C; Peña C; Martínez-Martínez L; Oliver A;
    Antimicrob Agents Chemother; 2011 May; 55(5):1906-11. PubMed ID: 21357294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains.
    Juan C; Maciá MD; Gutiérrez O; Vidal C; Pérez JL; Oliver A
    Antimicrob Agents Chemother; 2005 Nov; 49(11):4733-8. PubMed ID: 16251318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa.
    Schmidtke AJ; Hanson ND
    Antimicrob Agents Chemother; 2008 Nov; 52(11):3922-7. PubMed ID: 18779353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ampG gene of Pseudomonas aeruginosa and its role in β-lactamase expression.
    Zhang Y; Bao Q; Gagnon LA; Huletsky A; Oliver A; Jin S; Langaee T
    Antimicrob Agents Chemother; 2010 Nov; 54(11):4772-9. PubMed ID: 20713660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro and in vivo activities of the diazabicyclooctane OP0595 against AmpC-derepressed Pseudomonas aeruginosa.
    Morinaka A; Tsutsumi Y; Yamada K; Takayama Y; Sakakibara S; Takata T; Abe T; Furuuchi T; Inamura S; Sakamaki Y; Tsujii N; Ida T
    J Antibiot (Tokyo); 2017 Mar; 70(3):246-250. PubMed ID: 27999441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa.
    Asgarali A; Stubbs KA; Oliver A; Vocadlo DJ; Mark BL
    Antimicrob Agents Chemother; 2009 Jun; 53(6):2274-82. PubMed ID: 19273679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of AmpC β-lactamase mutations of extensively drug-resistant Pseudomonas aeruginosa isolates that develop resistance to ceftolozane/tazobactam during therapy.
    Fernández-Esgueva M; López-Calleja AI; Mulet X; Fraile-Ribot PA; Cabot G; Huarte R; Rezusta A; Oliver A
    Enferm Infecc Microbiol Clin (Engl Ed); 2020 Dec; 38(10):474-478. PubMed ID: 32143893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC.
    Lahiri SD; Walkup GK; Whiteaker JD; Palmer T; McCormack K; Tanudra MA; Nash TJ; Thresher J; Johnstone MR; Hajec L; Livchak S; McLaughlin RE; Alm RA
    J Antimicrob Chemother; 2015; 70(6):1650-8. PubMed ID: 25645206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of membrane-bound lytic transglycosylases increases outer membrane permeability and β-lactam sensitivity in Pseudomonas aeruginosa.
    Lamers RP; Nguyen UT; Nguyen Y; Buensuceso RN; Burrows LL
    Microbiologyopen; 2015 Dec; 4(6):879-95. PubMed ID: 26374494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta-lactamases identified in clinical isolates of Pseudomonas aeruginosa.
    Zhao WH; Hu ZQ
    Crit Rev Microbiol; 2010 Aug; 36(3):245-58. PubMed ID: 20482453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis.
    Chalhoub H; Sáenz Y; Nichols WW; Tulkens PM; Van Bambeke F
    Int J Antimicrob Agents; 2018 Nov; 52(5):697-701. PubMed ID: 30081137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa.
    Fraile-Ribot PA; Cabot G; Mulet X; Periañez L; Martín-Pena ML; Juan C; Pérez JL; Oliver A
    J Antimicrob Chemother; 2018 Mar; 73(3):658-663. PubMed ID: 29149337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.
    Balasubramanian D; Schneper L; Merighi M; Smith R; Narasimhan G; Lory S; Mathee K
    PLoS One; 2012; 7(3):e34067. PubMed ID: 22479525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial Effects of β-Lactams on Imipenem-Resistant Ceftazidime-Susceptible Pseudomonas aeruginosa.
    Wi YM; Choi JY; Lee JY; Kang CI; Chung DR; Peck KR; Song JH; Ko KS
    Antimicrob Agents Chemother; 2017 Jun; 61(6):. PubMed ID: 28373200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity of Ceftolozane-Tazobactam and Ceftazidime-Avibactam against Beta-Lactam-Resistant Pseudomonas aeruginosa Isolates.
    Humphries RM; Hindler JA; Wong-Beringer A; Miller SA
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28993338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1.
    Zincke D; Balasubramanian D; Silver LL; Mathee K
    Antimicrob Agents Chemother; 2016 Feb; 60(2):936-45. PubMed ID: 26621621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues.
    Juan C; Moyá B; Pérez JL; Oliver A
    Antimicrob Agents Chemother; 2006 May; 50(5):1780-7. PubMed ID: 16641450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.