BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2404194)

  • 21. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport phenomena in pulsating post-stenotic vortex flow in arteries. An interactive concept of fluid-dynamic, haemorheological and biochemical processes in white thrombus formation.
    Schmid-Schönbein H; Wurzinger LJ
    Nouv Rev Fr Hematol (1978); 1986; 28(5):257-67. PubMed ID: 3543838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheology in the microcirculation in normal and low flow states.
    Chien S
    Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations by leukocytes of erythrocyte flow in microchannels.
    La Celle PL
    Blood Cells; 1986; 12(1):179-89. PubMed ID: 3466657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow].
    Wang X; Stoltz JF
    J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Blood rheological changes and their clinical significance in chronic arterial obstructive disease].
    Sternitzky R; Seige K
    Z Gesamte Inn Med; 1983 Jan; 38(1):1-7. PubMed ID: 6342278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Analysis of the function of the circulatory system and its components based on rheologic viewpoints].
    Mikita J; Mátrai A; Bogár L
    Orv Hetil; 1989 Oct; 130(41):2187-8, 2191-4. PubMed ID: 2682436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The physiopathological basis for hemorrheological changes in diabetes].
    Neri Serneri GG; Galanti G; Paoli G
    Ric Clin Lab; 1983; 13 Suppl 3():149-57. PubMed ID: 6369493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report--Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis.
    Goldsmith HL; Turitto VT
    Thromb Haemost; 1986 Jun; 55(3):415-35. PubMed ID: 3750272
    [No Abstract]   [Full Text] [Related]  

  • 30. Evaluation of a torsional-vibrating technique for the hemorheological characterization.
    Travagli V; Zanardi I; Boschi L; Turchetti V; Forconi S
    Clin Hemorheol Microcirc; 2006; 35(1-2):283-9. PubMed ID: 16899944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward an optimal design principle in symmetric and asymmetric tree flow networks.
    Miguel AF
    J Theor Biol; 2016 Jan; 389():101-9. PubMed ID: 26555845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [FLuid dynamic aspects of atherogenesis and thrombogenesis].
    Schmid-Schönbein H
    Vasa Suppl; 1991; 32():11-3. PubMed ID: 1771481
    [No Abstract]   [Full Text] [Related]  

  • 33. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheology of sickle cells and its role in microcirculatory dynamics.
    Chien S; Kaperonis AA; King RG; Lipowsky HH; Schmalzer EA; Sung LA; Sung KL; Usami S
    Prog Clin Biol Res; 1987; 240():151-65. PubMed ID: 3615484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical characterization of the nonlinear rheological behavior of the vascular tissue.
    Vaishnav RN
    Biorheology; 1980; 17(3):219-26. PubMed ID: 7213988
    [No Abstract]   [Full Text] [Related]  

  • 37. Inelastic constitutive modeling for blood vessels based on viscoplasticity.
    Tanaka E; Yamada H
    Front Med Biol Eng; 1990; 2(3):177-80. PubMed ID: 2288885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Rheological properties of solutions of purified hemoglobin and blood].
    Shtykova EV; Morozova GM; Viazova EP; Matvienko VP
    Biull Eksp Biol Med; 1982 Sep; 94(9):19-21. PubMed ID: 7171815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.