BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24042335)

  • 1. Intraparticle donor-acceptor dyads prepared using conjugated metal-ligand linkages.
    Phebus BD; Yuan Y; Song Y; Hu P; Abdollahian Y; Tong QX; Chen S
    Phys Chem Chem Phys; 2013 Oct; 15(40):17647-53. PubMed ID: 24042335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.
    Hu P; Chen L; Kang X; Chen S
    Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles.
    Chen W; Pradhan S; Chen S
    Nanoscale; 2011 May; 3(5):2294-300. PubMed ID: 21494751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraparticle charge delocalization of carbene-functionalized ruthenium nanoparticles manipulated by selective ion binding.
    Kang X; Chen W; Zuckerman NB; Konopelski JP; Chen S
    Langmuir; 2011 Oct; 27(20):12636-41. PubMed ID: 21894955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic conductivity of alkyne-capped ruthenium nanoparticles.
    Kang X; Chen S
    Nanoscale; 2012 Jul; 4(14):4183-9. PubMed ID: 22441806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of intraparticle charge delocalization by selective complexation of transition-metal ions with histidine moieties.
    Kang X; Li X; Hewitt WM; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2012 Feb; 84(4):2025-30. PubMed ID: 22263655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkyne-functionalized ruthenium nanoparticles: ruthenium-vinylidene bonds at the metal-ligand interface.
    Kang X; Zuckerman NB; Konopelski JP; Chen S
    J Am Chem Soc; 2012 Jan; 134(3):1412-5. PubMed ID: 22229968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platinum nanoparticles functionalized with ethynylphenylboronic acid derivatives: selective manipulation of nanoparticle photoluminescence by fluoride ions.
    Hu P; Song Y; Rojas-Andrade MD; Chen S
    Langmuir; 2014 May; 30(18):5224-9. PubMed ID: 24713098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly and chemical reactivity of alkenes on platinum nanoparticles.
    Hu P; Duchesne PN; Song Y; Zhang P; Chen S
    Langmuir; 2015 Jan; 31(1):522-8. PubMed ID: 25511500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates.
    Chen L; Song Y; Hu P; Deming CP; Guo Y; Chen S
    Phys Chem Chem Phys; 2014 Sep; 16(35):18736-42. PubMed ID: 25075931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrocene-functionalized carbon nanoparticles.
    Song Y; Kang X; Zuckerman NB; Phebus B; Konopelski JP; Chen S
    Nanoscale; 2011 May; 3(5):1984-9. PubMed ID: 21347490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-mediated intervalence transfer.
    Chen W; Chen S; Ding F; Wang H; Brown LE; Konopelski JP
    J Am Chem Soc; 2008 Sep; 130(36):12156-62. PubMed ID: 18710225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysical properties of ruthenium(II) polypyridyl-gold(I) ethynyl dyads and triads containing mono- or diethynylphenanthroline incorporated into gold(I) triphenylphosphine organometallics.
    Shiotsuka M; Tsuji Y; Keyaki K; Nozaki K
    Inorg Chem; 2010 May; 49(9):4186-93. PubMed ID: 20364844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives.
    Chen W; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron donor-acceptor dyads and triads based on tris(bipyridine)ruthenium(II) and benzoquinone: synthesis, characterization, and photoinduced electron transfer reactions.
    Borgström M; Johansson O; Lomoth R; Baudin HB; Wallin S; Sun L; Akermark B; Hammarström L
    Inorg Chem; 2003 Aug; 42(17):5173-84. PubMed ID: 12924888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium complexes in different oxidation states: synthesis, crystal structure, spectra and redox properties.
    Jabłońska-Wawrzycka A; Rogala P; Michałkiewicz S; Hodorowicz M; Barszcz B
    Dalton Trans; 2013 May; 42(17):6092-101. PubMed ID: 23381742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.
    Sarkar B; Patra S; Fiedler J; Sunoj RB; Janardanan D; Lahiri GK; Kaim W
    J Am Chem Soc; 2008 Mar; 130(11):3532-42. PubMed ID: 18290644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-Mediated Intervalence Charge Transfer: Core-Size Effects.
    Hu P; Chen L; Deming CP; Kang X; Chen S
    Angew Chem Int Ed Engl; 2016 Jan; 55(4):1455-9. PubMed ID: 26644066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrene-functionalized ruthenium nanoparticles: Spectral evidence for the conjugated ruthenium-nitrene π bonds and the impact on the catalytic activity.
    Huang L; Zhang F; Sun W; Kang X
    J Colloid Interface Sci; 2021 Apr; 588():761-766. PubMed ID: 33308851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum chromophore-based systems for photoinduced charge separation: a molecular design approach for artificial photosynthesis.
    Chakraborty S; Wadas TJ; Hester H; Schmehl R; Eisenberg R
    Inorg Chem; 2005 Oct; 44(20):6865-78. PubMed ID: 16180842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.