These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24043156)
1. Water adsorption and dissociation on Ni surface: effects of steps, dopants, coverage and self-aggregation. Huang Y; Ling C; Jin M; Du J; Zhou T; Wang S Phys Chem Chem Phys; 2013 Nov; 15(41):17804-17. PubMed ID: 24043156 [TBL] [Abstract][Full Text] [Related]
2. First-principles study of C adsorption, O adsorption, and CO dissociation on flat and stepped Ni surfaces. Li T; Bhatia B; Sholl DS J Chem Phys; 2004 Nov; 121(20):10241-9. PubMed ID: 15549900 [TBL] [Abstract][Full Text] [Related]
3. Direct versus hydrogen-assisted CO dissociation over stepped Ni and Ni3Fe surfaces: a computational investigation. Yang K; Zhang M; Yu Y Phys Chem Chem Phys; 2015 Nov; 17(44):29616-27. PubMed ID: 26478478 [TBL] [Abstract][Full Text] [Related]
4. Water adsorption on olivine(010) surfaces: Effect of alkali and transition metal cation doping. Liu T; Luo W; Cole DR; Asthagiri A J Chem Phys; 2019 Jan; 150(4):044703. PubMed ID: 30709306 [TBL] [Abstract][Full Text] [Related]
5. Water adsorption and dissociation on Ni(110): how is it different from its close packed counterparts? Seenivasan H; Tiwari AK J Chem Phys; 2014 May; 140(17):174704. PubMed ID: 24811652 [TBL] [Abstract][Full Text] [Related]
6. Insight into both coverage and surface structure dependent CO adsorption and activation on different Ni surfaces from DFT and atomistic thermodynamics. Hao X; Wang B; Wang Q; Zhang R; Li D Phys Chem Chem Phys; 2016 Jun; 18(26):17606-18. PubMed ID: 27306737 [TBL] [Abstract][Full Text] [Related]
7. A DFT study of the NO dissociation on gold surfaces doped with transition metals. Fajín JL; Cordeiro MN; Gomes J J Chem Phys; 2013 Feb; 138(7):074701. PubMed ID: 23445024 [TBL] [Abstract][Full Text] [Related]
8. Water dissociation on Ni(100) and Ni(111): effect of surface temperature on reactivity. Seenivasan H; Tiwari AK J Chem Phys; 2013 Nov; 139(17):174707. PubMed ID: 24206322 [TBL] [Abstract][Full Text] [Related]
9. Effect of subsurface oxygen on the reactivity of the Ag(111) surface. Xu Y; Greeley J; Mavrikakis M J Am Chem Soc; 2005 Sep; 127(37):12823-7. PubMed ID: 16159275 [TBL] [Abstract][Full Text] [Related]
10. Water on extended and point defects at MgO surfaces. Costa D; Chizallet C; Ealet B; Goniakowski J; Finocchi F J Chem Phys; 2006 Aug; 125(5):054702. PubMed ID: 16942236 [TBL] [Abstract][Full Text] [Related]
11. CO Kwawu CR; Tia R; Adei E; Dzade NY; Catlow CRA; de Leeuw NH Phys Chem Chem Phys; 2017 Jul; 19(29):19478-19486. PubMed ID: 28718470 [TBL] [Abstract][Full Text] [Related]
12. Early stages of water/hydroxyl phase generation at transition metal surfaces--synergetic adsorption and O-H bond dissociation assistance. Michel C; Göltl F; Sautet P Phys Chem Chem Phys; 2012 Nov; 14(44):15286-90. PubMed ID: 23052096 [TBL] [Abstract][Full Text] [Related]
13. Cluster and periodic DFT calculations: the adsorption of atomic nitrogen on M(111) (M = Cu, Ag, Au) surfaces. Wang GC; Jiang L; Pang XY; Nakamura J J Phys Chem B; 2005 Sep; 109(38):17943-50. PubMed ID: 16853303 [TBL] [Abstract][Full Text] [Related]
14. Theoretical insights into the effect of terrace width and step edge coverage on CO adsorption and dissociation over stepped Ni surfaces. Yang K; Zhang M; Yu Y Phys Chem Chem Phys; 2017 Jul; 19(27):17918-17927. PubMed ID: 28664969 [TBL] [Abstract][Full Text] [Related]
15. Dual-scale modeling of benzene adsorption onto Ni(111) and Au(111) surfaces in explicit water. Schravendijk P; van der Vegt N; Delle Site L; Kremer K Chemphyschem; 2005 Sep; 6(9):1866-71. PubMed ID: 16086342 [TBL] [Abstract][Full Text] [Related]
16. Co-adsorption of water and hydrogen on Ni(111). Shan J; Aarts JF; Kleyn AW; Juurlink LB Phys Chem Chem Phys; 2008 Aug; 10(32):4994-5003. PubMed ID: 18688545 [TBL] [Abstract][Full Text] [Related]
17. Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. Donadio D; Ghiringhelli LM; Delle Site L J Am Chem Soc; 2012 Nov; 134(46):19217-22. PubMed ID: 23098232 [TBL] [Abstract][Full Text] [Related]
18. Trends in water-promoted oxygen dissociation on the transition metal surfaces from first principles. Yan M; Huang ZQ; Zhang Y; Chang CR Phys Chem Chem Phys; 2017 Jan; 19(3):2364-2371. PubMed ID: 28054681 [TBL] [Abstract][Full Text] [Related]
19. Oxygen adsorption onto pure and doped Al surfaces--the role of surface dopants. Lousada CM; Korzhavyi PA Phys Chem Chem Phys; 2015 Jan; 17(3):1667-79. PubMed ID: 25464123 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces. Pozzo M; Alfè D; Amieiro A; French S; Pratt A J Chem Phys; 2008 Mar; 128(9):094703. PubMed ID: 18331106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]