These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 24043252)
1. A1 adenosine receptor negatively modulates coronary reactive hyperemia via counteracting A2A-mediated H2O2 production and KATP opening in isolated mouse hearts. Zhou X; Teng B; Tilley S; Mustafa SJ Am J Physiol Heart Circ Physiol; 2013 Dec; 305(11):H1668-79. PubMed ID: 24043252 [TBL] [Abstract][Full Text] [Related]
2. Metabolic hyperemia requires ATP-sensitive K+ channels and H2O2 but not adenosine in isolated mouse hearts. Zhou X; Teng B; Tilley S; Ledent C; Mustafa SJ Am J Physiol Heart Circ Physiol; 2014 Oct; 307(7):H1046-55. PubMed ID: 25108010 [TBL] [Abstract][Full Text] [Related]
3. Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Sanjani MS; Teng B; Krahn T; Tilley S; Ledent C; Mustafa SJ Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2322-33. PubMed ID: 21949117 [TBL] [Abstract][Full Text] [Related]
4. Interactions between A(2A) adenosine receptors, hydrogen peroxide, and KATP channels in coronary reactive hyperemia. Sharifi-Sanjani M; Zhou X; Asano S; Tilley S; Ledent C; Teng B; Dick GM; Mustafa SJ Am J Physiol Heart Circ Physiol; 2013 May; 304(10):H1294-301. PubMed ID: 23525711 [TBL] [Abstract][Full Text] [Related]
5. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes. Morrison RR; Teng B; Oldenburg PJ; Katwa LC; Schnermann JB; Mustafa SJ Am J Physiol Heart Circ Physiol; 2006 Oct; 291(4):H1875-82. PubMed ID: 16679400 [TBL] [Abstract][Full Text] [Related]
6. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts. Zhou Z; Rajamani U; Labazi H; Tilley SL; Ledent C; Teng B; Mustafa SJ Purinergic Signal; 2015 Jun; 11(2):263-73. PubMed ID: 25911169 [TBL] [Abstract][Full Text] [Related]
7. Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation. Dick GM; Bratz IN; Borbouse L; Payne GA; Dincer UD; Knudson JD; Rogers PA; Tune JD Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2371-81. PubMed ID: 18375717 [TBL] [Abstract][Full Text] [Related]
8. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Berwick ZC; Payne GA; Lynch B; Dick GM; Sturek M; Tune JD Microcirculation; 2010 Nov; 17(8):600-7. PubMed ID: 21044214 [TBL] [Abstract][Full Text] [Related]
9. Functional and RNA expression profile of adenosine receptor subtypes in mouse mesenteric arteries. Teng B; Fil D; Tilley SL; Ledent C; Krahn T; Mustafa SJ J Cardiovasc Pharmacol; 2013 Jan; 61(1):70-6. PubMed ID: 23288107 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of adenosine A2a and A2b receptors on cardiac contractility. Chandrasekera PC; McIntosh VJ; Cao FX; Lasley RD Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H2082-9. PubMed ID: 20935155 [TBL] [Abstract][Full Text] [Related]
11. CYP-epoxygenases contribute to A2A receptor-mediated aortic relaxation via sarcolemmal KATP channels. Ponnoth DS; Nayeem MA; Tilley SL; Ledent C; Jamal Mustafa S Am J Physiol Regul Integr Comp Physiol; 2012 Nov; 303(10):R1003-10. PubMed ID: 23019210 [TBL] [Abstract][Full Text] [Related]
12. Adenosine inhibits tumor necrosis factor-alpha release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. Kreckler LM; Wan TC; Ge ZD; Auchampach JA J Pharmacol Exp Ther; 2006 Apr; 317(1):172-80. PubMed ID: 16339914 [TBL] [Abstract][Full Text] [Related]
13. Up-regulation of A 2B adenosine receptor in A 2A adenosine receptor knockout mouse coronary artery. Teng B; Ledent C; Mustafa SJ J Mol Cell Cardiol; 2008 May; 44(5):905-14. PubMed ID: 18423660 [TBL] [Abstract][Full Text] [Related]
15. Sex Difference in Coronary Endothelial Dysfunction in Apolipoprotein E Knockout Mouse: Role of NO and A2A Adenosine Receptor. Zhou X; Teng B; Mustafa SJ Microcirculation; 2015 Oct; 22(7):518-27. PubMed ID: 26201383 [TBL] [Abstract][Full Text] [Related]
16. Activation of adenosine A Sun C; Jiao T; Merkus D; Duncker DJ; Mustafa SJ; Zhou Z J Pharmacol Sci; 2019 Sep; 141(1):64-69. PubMed ID: 31640919 [TBL] [Abstract][Full Text] [Related]
17. Role of ω-hydroxylase in adenosine-mediated aortic response through MAP kinase using A2A-receptor knockout mice. Ponnoth DS; Nayeem MA; Kunduri SS; Tilley SL; Zeldin DC; Ledent C; Mustafa SJ Am J Physiol Regul Integr Comp Physiol; 2012 Feb; 302(4):R400-8. PubMed ID: 22160543 [TBL] [Abstract][Full Text] [Related]
18. Enhanced A2A adenosine receptor-mediated increase in coronary flow in type I diabetic mice. Labazi H; Teng B; Zhou Z; Mustafa SJ J Mol Cell Cardiol; 2016 Jan; 90():30-7. PubMed ID: 26654777 [TBL] [Abstract][Full Text] [Related]
19. In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice. Teng B; Tilley SL; Ledent C; Mustafa SJ Physiol Rep; 2016 Jun; 4(11):. PubMed ID: 27302991 [TBL] [Abstract][Full Text] [Related]
20. Glucose-induced intestinal vasodilation via adenosine A1 receptors requires nitric oxide but not K(+)(ATP) channels. Matheson PJ; Li N; Harris PD; Zakaria el R; Garrison RN J Surg Res; 2011 Jun; 168(2):179-87. PubMed ID: 20452612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]