These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 24043314)

  • 1. Synthesis of supported Ni@(RhNi-alloy) nanocomposites as an efficient catalyst towards hydrogen generation from N2H4BH3.
    Li C; Dou Y; Liu J; Chen Y; He S; Wei M; Evans DG; Duan X
    Chem Commun (Camb); 2013 Nov; 49(85):9992-4. PubMed ID: 24043314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Synthesis of MOF-Encapsulated NiPt Nanoparticles toward Efficient and Complete Hydrogen Evolution from Hydrazine Borane and Hydrazine.
    Zhang Z; Zhang S; Yao Q; Chen X; Lu ZH
    Inorg Chem; 2017 Oct; 56(19):11938-11945. PubMed ID: 28930439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles.
    Teng X; Yang H
    Nanotechnology; 2005 Jul; 16(7):S554-61. PubMed ID: 21727477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer-supported bimetallic Ag@AgAu nanocomposites: synthesis and catalytic properties.
    Zhang S; Wu W; Xiao X; Zhou J; Xu J; Ren F; Jiang C
    Chem Asian J; 2012 Aug; 7(8):1781-8. PubMed ID: 22700032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis.
    Xu C; Liu Y; Wang J; Geng H; Qiu H
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4626-32. PubMed ID: 22034948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction.
    Snyder J; McCue I; Livi K; Erlebacher J
    J Am Chem Soc; 2012 May; 134(20):8633-45. PubMed ID: 22533802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-Co2B, Ni-Ni3B and Co-Ni-B nanocomposites catalyzed ammonia-borane methanolysis for hydrogen generation.
    Kalidindi SB; Vernekar AA; Jagirdar BR
    Phys Chem Chem Phys; 2009 Feb; 11(5):770-5. PubMed ID: 19290323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation.
    Yan JM; Zhang XB; Han S; Shioyama H; Xu Q
    Inorg Chem; 2009 Aug; 48(15):7389-93. PubMed ID: 19722696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles.
    Alayoglu S; Eichhorn B
    J Am Chem Soc; 2008 Dec; 130(51):17479-86. PubMed ID: 19049272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
    Carpenter MK; Moylan TE; Kukreja RS; Atwan MH; Tessema MM
    J Am Chem Soc; 2012 May; 134(20):8535-42. PubMed ID: 22524269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt-nickel alloy nanoparticles.
    Ahmed J; Sharma S; Ramanujachary KV; Lofland SE; Ganguli AK
    J Colloid Interface Sci; 2009 Aug; 336(2):814-9. PubMed ID: 19497583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PtMo alloy and MoO(x)@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts.
    Liu Z; Hu JE; Wang Q; Gaskell K; Frenkel AI; Jackson GS; Eichhorn B
    J Am Chem Soc; 2009 May; 131(20):6924-5. PubMed ID: 19453191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active skeletal Ni catalysts prepared from an amorphous Ni-Zr alloy in the pre-crystallization state.
    Nozaki A; Kamegawa T; Ohmichi T; Yamashita H
    Chemphyschem; 2013 Aug; 14(11):2534-8. PubMed ID: 23720204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-adoptable polymer Ni/NiCo alloy nanochains: highly active and versatile catalysts for various organic reactions in both aqueous and nonaqueous media.
    Raula M; Rashid MH; Lai S; Roy M; Mandal TK
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):878-89. PubMed ID: 22220812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ synthesis of Ru/RGO nanocomposites as a highly efficient catalyst for selective hydrogenation of halonitroaromatics.
    Fan G; Huang W; Wang C
    Nanoscale; 2013 Aug; 5(15):6819-25. PubMed ID: 23771438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region.
    Xia Y; Yin L
    Phys Chem Chem Phys; 2013 Nov; 15(42):18627-34. PubMed ID: 24085286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimetallic core-shell nanocomposites using weak reducing agent and their transformation to alloy nanostructures.
    Sanyal U; Davis DT; Jagirdar BR
    Dalton Trans; 2013 May; 42(19):7147-57. PubMed ID: 23525123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.