BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24043319)

  • 1. Graphene@poly(m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy.
    Zhang L; Wang T; Wang H; Meng Y; Yu W; Chai L
    Chem Commun (Camb); 2013 Nov; 49(85):9974-6. PubMed ID: 24043319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)-functionalized reduction graphene oxide.
    Jin L; Chai L; Ren L; Jiang Y; Yang W; Wang S; Liao Q; Wang H; Zhang L
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31099-31110. PubMed ID: 31452128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glassy carbon electrode modified with a graphene oxide/poly(o-phenylenediamine) composite for the chemical detection of hydrogen peroxide.
    Nguyen VH; Tran TH; Shim JJ
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():144-50. PubMed ID: 25280690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification.
    Gao H; Sun Y; Zhou J; Xu R; Duan H
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):425-32. PubMed ID: 23265565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties.
    Yuan J; Zhu J; Bi H; Meng X; Liang S; Zhang L; Wang X
    Phys Chem Chem Phys; 2013 Aug; 15(31):12940-5. PubMed ID: 23812434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities.
    Zhang Z; Xiao F; Guo Y; Wang S; Liu Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2227-33. PubMed ID: 23429833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Core-Shell Magnetic Fe3O4@poly(m-Phenylenediamine) Particles for Chromium Reduction and Adsorption.
    Wang T; Zhang L; Li C; Yang W; Song T; Tang C; Meng Y; Dai S; Wang H; Chai L; Luo J
    Environ Sci Technol; 2015 May; 49(9):5654-62. PubMed ID: 25867789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification.
    Sreeprasad TS; Maliyekkal SM; Lisha KP; Pradeep T
    J Hazard Mater; 2011 Feb; 186(1):921-31. PubMed ID: 21168962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and effective adsorption of lead ions on fine poly(phenylenediamine) microparticles.
    Huang MR; Peng QY; Li XG
    Chemistry; 2006 May; 12(16):4341-50. PubMed ID: 16555358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption-desorption oscillations of nanoparticles on a honeycomb-patterned pH-responsive hydrogel surface in a closed reaction system.
    Jang JH; Orbán M; Wang S; Huh DS
    Phys Chem Chem Phys; 2014 Dec; 16(46):25296-305. PubMed ID: 25336297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oriented growth of poly(m-phenylenediamine) on Calotropis gigantea fiber for rapid adsorption of ciprofloxacin.
    Cao E; Duan W; Wang A; Zheng Y
    Chemosphere; 2017 Mar; 171():223-230. PubMed ID: 28024207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroanalytical and spectroscopic characterization of poly(o-phenylenediamine) grown on highly oriented pyrolytic graphite.
    De Giglio E; Losito I; Torsi L; Sabbatini L; Zambonin PG
    Ann Chim; 2003 Mar; 93(3):209-21. PubMed ID: 12737484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels.
    Adhikari B; Biswas A; Banerjee A
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5472-82. PubMed ID: 22970805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with Au nanoparticles.
    Adhikari B; Biswas A; Banerjee A
    Langmuir; 2012 Jan; 28(2):1460-9. PubMed ID: 22133019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures.
    Vadahanambi S; Lee SH; Kim WJ; Oh IK
    Environ Sci Technol; 2013 Sep; 47(18):10510-7. PubMed ID: 23947834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal.
    Fan L; Luo C; Sun M; Qiu H; Li X
    Colloids Surf B Biointerfaces; 2013 Mar; 103():601-7. PubMed ID: 23261586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.
    Hirsch A
    Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752
    [No Abstract]   [Full Text] [Related]  

  • 18. DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid.
    Liu F; Choi JY; Seo TS
    Chem Commun (Camb); 2010 Apr; 46(16):2844-6. PubMed ID: 20369202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of water-dispersible Cu2O nanocrystal-reduced graphene oxide hybrid as a promising cancer therapeutic agent.
    Hou C; Quan H; Duan Y; Zhang Q; Wang H; Li Y
    Nanoscale; 2013 Feb; 5(3):1227-32. PubMed ID: 23302950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Click' preparation of CuPt nanorod-anchored graphene oxide as a catalyst in water.
    Yang H; Kwon Y; Kwon T; Lee H; Kim BJ
    Small; 2012 Oct; 8(20):3161-8. PubMed ID: 22821640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.