These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

822 related articles for article (PubMed ID: 24043437)

  • 1. A new framework and software to estimate time-varying reproduction numbers during epidemics.
    Cori A; Ferguson NM; Fraser C; Cauchemez S
    Am J Epidemiol; 2013 Nov; 178(9):1505-12. PubMed ID: 24043437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved inference of time-varying reproduction numbers during infectious disease outbreaks.
    Thompson RN; Stockwin JE; van Gaalen RD; Polonsky JA; Kamvar ZN; Demarsh PA; Dahlqwist E; Li S; Miguel E; Jombart T; Lessler J; Cauchemez S; Cori A
    Epidemics; 2019 Dec; 29():100356. PubMed ID: 31624039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using routine surveillance data to estimate the epidemic potential of emerging zoonoses: application to the emergence of US swine origin influenza A H3N2v virus.
    Cauchemez S; Epperson S; Biggerstaff M; Swerdlow D; Finelli L; Ferguson NM
    PLoS Med; 2013; 10(3):e1001399. PubMed ID: 23472057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of R(t) based on illness onset data: An analysis of 1907-1908 smallpox epidemic in Tokyo.
    Nakajo K; Nishiura H
    Epidemics; 2022 Mar; 38():100545. PubMed ID: 35152059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Modeling of Epidemics with an Empirical Bayes Framework.
    Brooks LC; Farrow DC; Hyun S; Tibshirani RJ; Rosenfeld R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004382. PubMed ID: 26317693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks.
    Obadia T; Haneef R; Boëlle PY
    BMC Med Inform Decis Mak; 2012 Dec; 12():147. PubMed ID: 23249562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population-level differences in disease transmission: a Bayesian analysis of multiple smallpox epidemics.
    Elderd BD; Dwyer G; Dukic V
    Epidemics; 2013 Sep; 5(3):146-56. PubMed ID: 24021521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic.
    Cazelles B; Champagne C; Nguyen-Van-Yen B; Comiskey C; Vergu E; Roche B
    PLoS Comput Biol; 2021 Jul; 17(7):e1009211. PubMed ID: 34310593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised extraction of epidemic syndromes from participatory influenza surveillance self-reported symptoms.
    Kalimeri K; Delfino M; Cattuto C; Perrotta D; Colizza V; Guerrisi C; Turbelin C; Duggan J; Edmunds J; Obi C; Pebody R; Franco AO; Moreno Y; Meloni S; Koppeschaar C; Kjelsø C; Mexia R; Paolotti D
    PLoS Comput Biol; 2019 Apr; 15(4):e1006173. PubMed ID: 30958817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19.
    Nishiura H
    Theor Biol Med Model; 2007 Jun; 4():20. PubMed ID: 17547753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurability of the epidemic reproduction number in data-driven contact networks.
    Liu QH; Ajelli M; Aleta A; Merler S; Moreno Y; Vespignani A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12680-12685. PubMed ID: 30463945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-area epidemics of influenza and pediatric diseases from infectious disease surveillance in Japan, 1999-2005.
    Murakami Y; Hashimoto S; Ohta A; Kawado M; Izumida M; Tada Y; Shigematsu M; Yasui Y; Taniguchi K; Nagai M
    J Epidemiol; 2007 Dec; 17 Suppl(Suppl):S23-31. PubMed ID: 18239338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating individual and household reproduction numbers in an emerging epidemic.
    Fraser C
    PLoS One; 2007 Aug; 2(8):e758. PubMed ID: 17712406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Spatiotemporal Data for Epidemic Alert Systems: Monitoring Influenza-Like Illness in France.
    Polyakov P; Souty C; Böelle PY; Breban R
    Am J Epidemiol; 2019 Apr; 188(4):724-733. PubMed ID: 30576414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust qualitative estimation of time-varying contact rates in uncertain epidemics.
    Angulo MT; Velasco-Hernandez JX
    Epidemics; 2018 Sep; 24():98-104. PubMed ID: 29567063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time series methods for obtaining excess mortality attributable to influenza epidemics.
    Nunes B; Natário I; Carvalho ML
    Stat Methods Med Res; 2011 Aug; 20(4):331-45. PubMed ID: 20212071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type and quantity of data needed for an early estimate of transmissibility when an infectious disease emerges.
    Becker NG; Wang D; Clements M
    Euro Surveill; 2010 Jul; 15(26):. PubMed ID: 20619130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring real-time transmission heterogeneity from incidence data.
    Zhang Y; Britton T; Zhou X
    PLoS Comput Biol; 2022 Dec; 18(12):e1010078. PubMed ID: 36455043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009.
    Nishiura H; Chowell G; Safan M; Castillo-Chavez C
    Theor Biol Med Model; 2010 Jan; 7():1. PubMed ID: 20056004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak.
    Park SW; Bolker BM; Champredon D; Earn DJD; Li M; Weitz JS; Grenfell BT; Dushoff J
    J R Soc Interface; 2020 Jul; 17(168):20200144. PubMed ID: 32693748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.