These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 24043785)

  • 41. A P39R mutation at the N-terminal domain of human αB-crystallin regulates its oligomeric state and chaperone-like activity.
    Numoto N; Kita A; Fujii N; Miki K
    Biochem Biophys Res Commun; 2012 Aug; 425(3):601-6. PubMed ID: 22877753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.
    Ghosh JG; Houck SA; Clark JI
    PLoS One; 2007 Jun; 2(6):e498. PubMed ID: 17551579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Structural View of αB-crystallin Assembly and Amyloid Aggregation.
    Liu Z; Zhang S; Li D; Liu C
    Protein Pept Lett; 2017; 24(4):315-321. PubMed ID: 28176658
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alpha-crystallin as a molecular chaperone.
    Derham BK; Harding JJ
    Prog Retin Eye Res; 1999 Jul; 18(4):463-509. PubMed ID: 10217480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of αB-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart.
    Mishra S; Wu SY; Fuller AW; Wang Z; Rose KL; Schey KL; Mchaourab HS
    J Biol Chem; 2018 Jan; 293(2):740-753. PubMed ID: 29162721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of Cu2+-mediated generation of reactive oxygen species by the small heat shock protein αB-crystallin: the relative contributions of the N- and C-terminal domains.
    Prabhu S; Srinivas V; Ramakrishna T; Raman B; Rao ChM
    Free Radic Biol Med; 2011 Aug; 51(3):755-62. PubMed ID: 21658443
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis.
    Rajagopal P; Tse E; Borst AJ; Delbecq SP; Shi L; Southworth DR; Klevit RE
    Elife; 2015 May; 4():. PubMed ID: 25962097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets.
    Arrigo AP; Simon S; Gibert B; Kretz-Remy C; Nivon M; Czekalla A; Guillet D; Moulin M; Diaz-Latoud C; Vicart P
    FEBS Lett; 2007 Jul; 581(19):3665-74. PubMed ID: 17467701
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Translational thermotolerance provided by small heat shock proteins is limited to cap-dependent initiation and inhibited by 2-aminopurine.
    Doerwald L; Onnekink C; van Genesen ST; de Jong WW; Lubsen NH
    J Biol Chem; 2003 Dec; 278(50):49743-50. PubMed ID: 14523008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell penetration peptides for enhanced entry of αB-crystallin into lens cells.
    Mueller NH; Ammar DA; Petrash JM
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):2-8. PubMed ID: 23150610
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional sequences in human alphaB crystallin.
    Clark JI
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):240-5. PubMed ID: 26341790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies of alphaB crystallin subunit dynamics by surface plasmon resonance.
    Liu L; Ghosh JG; Clark JI; Jiang S
    Anal Biochem; 2006 Mar; 350(2):186-95. PubMed ID: 16480679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    J Biol Chem; 2002 Nov; 277(48):45821-8. PubMed ID: 12235146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Abnormal assemblies and subunit exchange of alphaB-crystallin R120 mutants could be associated with destabilization of the dimeric substructure.
    Michiel M; Skouri-Panet F; Duprat E; Simon S; Férard C; Tardieu A; Finet S
    Biochemistry; 2009 Jan; 48(2):442-53. PubMed ID: 19140694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Succinylation Is a Gain-of-Function Modification in Human Lens αB-Crystallin.
    Nandi SK; Rakete S; Nahomi RB; Michel C; Dunbar A; Fritz KS; Nagaraj RH
    Biochemistry; 2019 Mar; 58(9):1260-1274. PubMed ID: 30758948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential phosphorylation-based regulation of αB-crystallin chaperone activity for multipass transmembrane proteins.
    Ciano M; Allocca S; Ciardulli MC; Della Volpe L; Bonatti S; D'Agostino M
    Biochem Biophys Res Commun; 2016 Oct; 479(2):325-330. PubMed ID: 27641668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency.
    Grosas AB; Rekas A; Mata JP; Thorn DC; Carver JA
    J Mol Biol; 2020 Sep; 432(20):5593-5613. PubMed ID: 32827531
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins.
    Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C
    Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paradoxical effects of substitution and deletion mutation of Arg56 on the structure and chaperone function of human alphaB-crystallin.
    Biswas A; Goshe J; Miller A; Santhoshkumar P; Luckey C; Bhat MB; Nagaraj RH
    Biochemistry; 2007 Feb; 46(5):1117-27. PubMed ID: 17260942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human alphaB-crystallin. Small heat shock protein and molecular chaperone.
    Muchowski PJ; Bassuk JA; Lubsen NH; Clark JI
    J Biol Chem; 1997 Jan; 272(4):2578-82. PubMed ID: 8999975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.