These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24043795)

  • 1. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.
    Man W; Florescu M; Williamson EP; He Y; Hashemizad SR; Leung BY; Liner DR; Torquato S; Chaikin PM; Steinhardt PJ
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):15886-91. PubMed ID: 24043795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using microwave and macroscopic samples of dielectric solids to study the photonic properties of disordered photonic bandgap materials.
    Hashemizad SR; Tsitrin S; Yadak P; He Y; Cuneo D; Williamson EP; Liner D; Man W
    J Vis Exp; 2014 Sep; (91):51614. PubMed ID: 25285416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast.
    Man W; Florescu M; Matsuyama K; Yadak P; Nahal G; Hashemizad S; Williamson E; Steinhardt P; Torquato S; Chaikin P
    Opt Express; 2013 Aug; 21(17):19972-81. PubMed ID: 24105543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stealthy and hyperuniform isotropic photonic band gap structure in 3D.
    Siedentop L; Lui G; Maret G; Chaikin PM; Steinhardt PJ; Torquato S; Keim P; Florescu M
    PNAS Nexus; 2024 Sep; 3(9):pgae383. PubMed ID: 39328473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designer disordered materials with large, complete photonic band gaps.
    Florescu M; Torquato S; Steinhardt PJ
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20658-63. PubMed ID: 19918087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperuniform disordered waveguides and devices for near infrared silicon photonics.
    Milošević MM; Man W; Nahal G; Steinhardt PJ; Torquato S; Chaikin PM; Amoah T; Yu B; Mullen RA; Florescu M
    Sci Rep; 2019 Dec; 9(1):20338. PubMed ID: 31889165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave propagation and band tails of two-dimensional disordered systems in the thermodynamic limit.
    Klatt MA; Steinhardt PJ; Torquato S
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2213633119. PubMed ID: 36538478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foam as a self-assembling amorphous photonic band gap material.
    Ricouvier J; Tabeling P; Yazhgur P
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9202-9207. PubMed ID: 31019086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials.
    Froufe-Pérez LS; Engel M; Damasceno PF; Muller N; Haberko J; Glotzer SC; Scheffold F
    Phys Rev Lett; 2016 Jul; 117(5):053902. PubMed ID: 27517772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band gap formation and Anderson localization in disordered photonic materials with structural correlations.
    Froufe-Pérez LS; Engel M; Sáenz JJ; Scheffold F
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9570-9574. PubMed ID: 28831009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disorder-Immune Photonics Based on Mie-Resonant Dielectric Metamaterials.
    Liu C; Rybin MV; Mao P; Zhang S; Kivshar Y
    Phys Rev Lett; 2019 Oct; 123(16):163901. PubMed ID: 31702361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disordered hyperuniform heterogeneous materials.
    Torquato S
    J Phys Condens Matter; 2016 Oct; 28(41):414012. PubMed ID: 27545746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of anisotropic stealthy hyperuniform composites with engineered directional scattering properties.
    Shi W; Keeney D; Chen D; Jiao Y; Torquato S
    Phys Rev E; 2023 Oct; 108(4-2):045306. PubMed ID: 37978628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Tuning of Transport Regimes in Hyperuniform Disordered Photonic Materials.
    Aubry GJ; Froufe-Pérez LS; Kuhl U; Legrand O; Scheffold F; Mortessagne F
    Phys Rev Lett; 2020 Sep; 125(12):127402. PubMed ID: 33016709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.
    Wen F; David S; Checoury X; El Kurdi M; Boucaud P
    Opt Express; 2008 Aug; 16(16):12278-89. PubMed ID: 18679505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unfolding the band structure of non-crystalline photonic band gap materials.
    Tsitrin S; Williamson EP; Amoah T; Nahal G; Chan HL; Florescu M; Man W
    Sci Rep; 2015 Aug; 5():13301. PubMed ID: 26289434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandgap fluctuations and robustness in two-dimensional hyperuniform dielectric materials.
    Froufe-Pérez LS; Aubry GJ; Scheffold F; Magkiriadou S
    Opt Express; 2023 May; 31(11):18509-18515. PubMed ID: 37381560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary mixtures of charged colloids: a potential route to synthesize disordered hyperuniform materials.
    Chen D; Lomba E; Torquato S
    Phys Chem Chem Phys; 2018 Jul; 20(26):17557-17562. PubMed ID: 29932188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraefficient reconstruction of effectively hyperuniform disordered biphase materials via non-Gaussian random fields.
    Gao Y; Jiao Y; Liu Y
    Phys Rev E; 2022 Apr; 105(4-2):045305. PubMed ID: 35590629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.