These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24044479)

  • 1. Active ciliated surfaces expel model swimmers.
    Shum H; Tripathi A; Yeomans JM; Balazs AC
    Langmuir; 2013 Oct; 29(41):12770-6. PubMed ID: 24044479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-driven motion of passive cilia enables the layer to expel sticky particles.
    Tripathi A; Shum H; Balazs AC
    Soft Matter; 2014 Mar; 10(9):1416-27. PubMed ID: 24652071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control.
    Halder P; Nasabi M; Jayasuriya N; Shimeta J; Deighton M; Bhattacharya S; Mitchell A; Bhuiyan MA
    Biofouling; 2014; 30(6):695-707. PubMed ID: 24814651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mini review: Biomimetic models and bioinspired surfaces for fouling control.
    Scardino AJ; de Nys R
    Biofouling; 2011 Jan; 27(1):73-86. PubMed ID: 21132577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current and emerging environmentally-friendly systems for fouling control in the marine environment.
    Gittens JE; Smith TJ; Suleiman R; Akid R
    Biotechnol Adv; 2013 Dec; 31(8):1738-53. PubMed ID: 24051087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment.
    Halder P; Nasabi M; Lopez FJ; Jayasuriya N; Bhattacharya S; Deighton M; Mitchell A; Bhuiyan MA
    Biofouling; 2013; 29(6):697-713. PubMed ID: 23789960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of marine fouling organisms with topography of varied scale and geometry: a review.
    Myan FW; Walker J; Paramor O
    Biointerphases; 2013 Dec; 8(1):30. PubMed ID: 24706140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The characterization, replication and testing of dermal denticles of Scyliorhinus canicula for physical mechanisms of biofouling prevention.
    Sullivan T; Regan F
    Bioinspir Biomim; 2011 Dec; 6(4):046001. PubMed ID: 21992932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping of swimmers in a vortex lattice.
    Berman SA; Mitchell KA
    Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-Biofouling and Self-Cleaning Surfaces Featured with Magnetic Artificial Cilia.
    Zhang S; Zuo P; Wang Y; Onck P; Toonder JMJD
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27726-27736. PubMed ID: 32476404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides.
    Bauer S; Arpa-Sancet MP; Finlay JA; Callow ME; Callow JA; Rosenhahn A
    Langmuir; 2013 Mar; 29(12):4039-47. PubMed ID: 23425225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Bioinspired Artificial Cilia to Regulate Particle-Surface Interactions.
    Balazs AC; Bhattacharya A; Tripathi A; Shum H
    J Phys Chem Lett; 2014 May; 5(10):1691-700. PubMed ID: 26270368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of external flow on the dynamics of swimming microorganisms near surfaces.
    Chilukuri S; Collins CH; Underhill PT
    J Phys Condens Matter; 2014 Mar; 26(11):115101. PubMed ID: 24590066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the
    Verasztó C; Ueda N; Bezares-Calderón LA; Panzera A; Williams EA; Shahidi R; Jékely G
    Elife; 2017 May; 6():. PubMed ID: 28508746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing biomimetic antifouling surfaces.
    Salta M; Wharton JA; Stoodley P; Dennington SP; Goodes LR; Werwinski S; Mart U; Wood RJ; Stokes KR
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4729-54. PubMed ID: 20855318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a lattice Boltzmann-immersed boundary method for fluid-filament dynamics and flow sensing.
    O Connor J; Revell A; Mandal P; Day P
    J Biomech; 2016 Jul; 49(11):2143-2151. PubMed ID: 26718062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propulsion and trapping of microparticles by active cilia arrays.
    Bhattacharya A; Buxton GA; Usta OB; Balazs AC
    Langmuir; 2012 Feb; 28(6):3217-26. PubMed ID: 22233228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface sensing and settlement strategies of marine biofouling organisms.
    Rosenhahn A; Sendra GH
    Biointerphases; 2012 Dec; 7(1-4):63. PubMed ID: 23104237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic and bioinspired surface topographies as a green strategy for combating biofouling: a review.
    Vellwock AE; Yao H
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 34044382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.