These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24044650)

  • 1. A bilateral rehabilitation system for the lower limbs.
    Dedov VN; Dedova IV
    Disabil Rehabil Assist Technol; 2015 Jan; 10(1):75-80. PubMed ID: 24044650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength training associated with task-oriented training to enhance upper-limb motor function in elderly patients with mild impairment after stroke: a randomized controlled trial.
    da Silva PB; Antunes FN; Graef P; Cechetti F; Pagnussat Ade S
    Am J Phys Med Rehabil; 2015 Jan; 94(1):11-9. PubMed ID: 25122097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Management of Exercise Intervention at the Point of Care: Application of a Web-Based Leg Training System.
    Dedov VN; Dedova IV
    JMIR Rehabil Assist Technol; 2015 Nov; 2(2):e11. PubMed ID: 28582243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyographic comparison of conventional machine strength training versus bodyweight exercises in patients with chronic stroke.
    Vinstrup J; Calatayud J; Jakobsen MD; Sundstrup E; Jay K; Brandt M; Zeeman P; Jørgensen JR; Andersen LL
    Top Stroke Rehabil; 2017 May; 24(4):242-249. PubMed ID: 28056670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic unilateral and bilateral upper-limb movement training for stroke survivors afflicted by chronic hemiparesis.
    Simkins M; Kim H; Abrams G; Byl N; Rosen J
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650506. PubMed ID: 24187321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral priming before wii-based movement therapy enhances upper limb rehabilitation and its retention after stroke: a case-controlled study.
    Shiner CT; Byblow WD; McNulty PA
    Neurorehabil Neural Repair; 2014; 28(9):828-38. PubMed ID: 24627333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rising and sitting down in stroke patients. Auditory feedback and dynamic strength training to enhance symmetrical body weight distribution.
    Engardt M
    Scand J Rehabil Med Suppl; 1994; 31():1-57. PubMed ID: 7886433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower-limb performance disparities: implications for exercise prescription in multiple sclerosis.
    Larson RD; McCully KK; Larson DJ; Pryor WM; White LJ
    J Rehabil Res Dev; 2014; 51(10):1537-44. PubMed ID: 25855905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the modifications of bilateral deficit in upper and lower limbs by resistance training in humans.
    Taniguchi Y
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):226-30. PubMed ID: 9721000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral upper limb training with functional electric stimulation in patients with chronic stroke.
    Chan MK; Tong RK; Chung KY
    Neurorehabil Neural Repair; 2009 May; 23(4):357-65. PubMed ID: 19074684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance-based, reciprocal upper and lower limb locomotor training in chronic stroke: a randomized, controlled crossover study.
    Page SJ; Levine P; Teepen J; Hartman EC
    Clin Rehabil; 2008 Jul; 22(7):610-7. PubMed ID: 18586812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a Web-Enabled Leg Training System for the Objective Monitoring and Quantitative Analysis of Exercise-Induced Fatigue.
    Dedov VN; Dedova IV
    JMIR Res Protoc; 2016 Aug; 5(3):e171. PubMed ID: 27549345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral training does not facilitate performance of copying tasks in poststroke hemiplegia.
    Tijs E; Matyas TA
    Neurorehabil Neural Repair; 2006 Dec; 20(4):473-83. PubMed ID: 17082503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of digitized apparatus for upper limb rehabilitation training.
    Hwang YS; Chen SC; Chen CC; Chen WL; Shih YY; Chen YL
    Technol Health Care; 2013; 21(6):571-9. PubMed ID: 24284546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unilateral versus bilateral upper limb training after stroke: the Upper Limb Training After Stroke clinical trial.
    van Delden AL; Peper CL; Nienhuys KN; Zijp NI; Beek PJ; Kwakkel G
    Stroke; 2013 Sep; 44(9):2613-6. PubMed ID: 23868279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural coupling between upper and lower limbs during recumbent stepping.
    Huang HJ; Ferris DP
    J Appl Physiol (1985); 2004 Oct; 97(4):1299-308. PubMed ID: 15180979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the Internet-Enabled System for Exercise Telerehabilitation and Cardiovascular Training.
    Dedov VN; Dedova IV
    Telemed J E Health; 2015 Jul; 21(7):575-80. PubMed ID: 25734449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.