BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24044772)

  • 1. Specific and non-specific protein association in solution: computation of solvent effects and prediction of first-encounter modes for efficient configurational bias Monte Carlo simulations.
    Cardone A; Pant H; Hassan SA
    J Phys Chem B; 2013 Oct; 117(41):12360-74. PubMed ID: 24044772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and characterization of nonspecific, sparsely populated binding modes in the early stages of complexation.
    Cardone A; Bornstein A; Pant HC; Brady M; Sriram R; Hassan SA
    J Comput Chem; 2015 May; 36(13):983-95. PubMed ID: 25782918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-adaptive multiscaling algorithm for efficient simulations of many-protein systems in crowded conditions.
    Hassan SA
    Phys Chem Chem Phys; 2018 Nov; 20(45):28544-28557. PubMed ID: 30421760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DICE: A Monte Carlo Code for Molecular Simulation Including the Configurational Bias Monte Carlo Method.
    Cezar HM; Canuto S; Coutinho K
    J Chem Inf Model; 2020 Jul; 60(7):3472-3488. PubMed ID: 32470296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implicit treatment of solvent dispersion forces in protein simulations.
    Hassan SA
    J Comput Chem; 2014 Aug; 35(22):1621-9. PubMed ID: 24919463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-exclusion and liquid-structure forces in implicit solvation.
    Hassan SA; Steinbach PJ
    J Phys Chem B; 2011 Dec; 115(49):14668-82. PubMed ID: 22007697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-amino acid interaction energies in three-dimensional-lattice Monte Carlo simulations of a model 27-mer protein: Folding thermodynamics and kinetics.
    Leonhard K; Prausnitz JM; Radke CJ
    Protein Sci; 2004 Feb; 13(2):358-69. PubMed ID: 14739322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced conformational sampling in Monte Carlo simulations of proteins: application to a constrained peptide.
    Kidera A
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9886-9. PubMed ID: 7568238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding.
    Zhang Z; Ricci CG; Fan C; Cheng LT; Li B; McCammon JA
    J Chem Theory Comput; 2021 Apr; 17(4):2465-2478. PubMed ID: 33650860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the acid/base behavior of proteins: a constant-pH Monte Carlo approach with generalized born solvent.
    Aleksandrov A; Polydorides S; Archontis G; Simonson T
    J Phys Chem B; 2010 Aug; 114(32):10634-48. PubMed ID: 20701391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MC-PHS: a Monte Carlo implementation of the primary hydration shell for protein folding and design.
    Kentsis A; Mezei M; Osman R
    Biophys J; 2003 Feb; 84(2 Pt 1):805-15. PubMed ID: 12547765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying native-like protein structures with scoring functions based on all-atom ECEPP force fields, implicit solvent models and structure relaxation.
    Arnautova YA; Vorobjev YN; Vila JA; Scheraga HA
    Proteins; 2009 Oct; 77(1):38-51. PubMed ID: 19384995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replica exchange simulations of transient encounter complexes in protein-protein association.
    Kim YC; Tang C; Clore GM; Hummer G
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12855-60. PubMed ID: 18728193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.
    Bergazin TD; Ben-Shalom IY; Lim NM; Gill SC; Gilson MK; Mobley DL
    J Comput Aided Mol Des; 2021 Feb; 35(2):167-177. PubMed ID: 32968887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-inhibitor association thermodynamics: explicit and continuum solvent studies.
    Resat H; Marrone TJ; McCammon JA
    Biophys J; 1997 Feb; 72(2 Pt 1):522-32. PubMed ID: 9017183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo.
    Zhang J; Kou SC; Liu JS
    J Chem Phys; 2007 Jun; 126(22):225101. PubMed ID: 17581081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SAAP force field. A simple approach to a new all-atom protein force field by using single amino acid potential (SAAP) functions in various solvents.
    Iwaoka M; Tomoda S
    J Comput Chem; 2003 Jul; 24(10):1192-200. PubMed ID: 12820126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.