These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24045114)

  • 1. Fatigue-induced motor cortex excitability changes in subjects with spinal cord injury.
    Nardone R; Höller Y; Brigo F; Höller P; Christova M; Tezzon F; Golaszewski S; Trinka E
    Brain Res Bull; 2013 Oct; 99():9-12. PubMed ID: 24045114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal cord injury affects I-wave facilitation in human motor cortex.
    Nardone R; Höller Y; Bathke AC; Orioli A; Schwenker K; Frey V; Golaszewski S; Brigo F; Trinka E
    Brain Res Bull; 2015 Jul; 116():93-7. PubMed ID: 26151771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M; Temesi J; Rupp T; Levy P; Millet GY; Verges S
    Neuroscience; 2013 Feb; 231():384-99. PubMed ID: 23131709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review.
    Nardone R; Höller Y; Brigo F; Orioli A; Tezzon F; Schwenker K; Christova M; Golaszewski S; Trinka E
    Brain Res; 2015 Sep; 1619():139-54. PubMed ID: 25251591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of single-session repetitive transcranial magnetic stimulation applied over the hand versus leg motor area on pain after spinal cord injury.
    Jetté F; Côté I; Meziane HB; Mercier C
    Neurorehabil Neural Repair; 2013 Sep; 27(7):636-43. PubMed ID: 23579183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex.
    Takahashi K; Maruyama A; Maeda M; Etoh S; Hirakoba K; Kawahira K; Rothwell JC
    Clin Neurophysiol; 2009 Jan; 120(1):198-203. PubMed ID: 19028439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of TMS and fMRI reveals a specific pattern of reorganization in M1 in patients after complete spinal cord injury.
    Lotze M; Laubis-Herrmann U; Topka H
    Restor Neurol Neurosci; 2006; 24(2):97-107. PubMed ID: 16720945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of corticospinal excitability after traumatic spinal cord injury using MEP recruitment curves: a preliminary TMS study.
    Nardone R; Höller Y; Thomschewski A; Bathke AC; Ellis AR; Golaszewski SM; Brigo F; Trinka E
    Spinal Cord; 2015 Jul; 53(7):534-8. PubMed ID: 25665538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paired-associative stimulation can modulate muscle fatigue induced motor cortex excitability changes.
    Milanović S; Filipović SR; Blesić S; Ilić TV; Dhanasekaran S; Ljubisavljević M
    Behav Brain Res; 2011 Sep; 223(1):30-5. PubMed ID: 21515308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-interval intracortical inhibition with incomplete spinal cord injury.
    Roy FD; Zewdie ET; Gorassini MA
    Clin Neurophysiol; 2011 Jul; 122(7):1387-95. PubMed ID: 21295518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor cortex excitability changes following a lesion in the posterior columns of the cervical spinal cord.
    Nardone R; Golaszewski S; Bergmann J; Venturi A; Prünster I; Bratti A; Ladurner G; Tezzon F
    Neurosci Lett; 2008 Mar; 434(1):119-23. PubMed ID: 18280657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor cortex changes in spinal cord injury: a TMS study.
    Saturno E; Bonato C; Miniussi C; Lazzaro V; Callea L
    Neurol Res; 2008 Dec; 30(10):1084-5. PubMed ID: 18768107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary motor cortex inhibition in spinal cord injuries.
    Kriz J; Kozak J; Zedka M
    Neuro Endocrinol Lett; 2012; 33(4):431-41. PubMed ID: 22936262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation.
    Di Lazzaro V; Oliviero A; Mazzone P; Pilato F; Saturno E; Dileone M; Insola A; Tonali PA; Rothwell JC
    Exp Brain Res; 2002 Nov; 147(1):108-13. PubMed ID: 12373375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions.
    Löscher WN; Nordlund MM
    Muscle Nerve; 2002 Jun; 25(6):864-72. PubMed ID: 12115976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.