These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 24045205)
1. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes. Lindedam J; Haven MØ; Chylenski P; Jørgensen H; Felby C Bioresour Technol; 2013 Nov; 148():180-8. PubMed ID: 24045205 [TBL] [Abstract][Full Text] [Related]
2. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing. Rodrigues AC; Haven MØ; Lindedam J; Felby C; Gama M Enzyme Microb Technol; 2015 Nov; 79-80():70-7. PubMed ID: 26320717 [TBL] [Abstract][Full Text] [Related]
3. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Pribowo A; Arantes V; Saddler JN Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175 [TBL] [Abstract][Full Text] [Related]
4. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Huang R; Guo H; Su R; Qi W; He Z Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443 [TBL] [Abstract][Full Text] [Related]
5. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Ko JK; Bak JS; Jung MW; Lee HJ; Choi IG; Kim TH; Kim KH Bioresour Technol; 2009 Oct; 100(19):4374-80. PubMed ID: 19427784 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Cheng CL; Chang JS Bioresour Technol; 2011 Sep; 102(18):8628-34. PubMed ID: 21481585 [TBL] [Abstract][Full Text] [Related]
7. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Chu Q; Li X; Ma B; Xu Y; Ouyang J; Zhu J; Yu S; Yong Q Bioresour Technol; 2012 Nov; 123():699-702. PubMed ID: 22975252 [TBL] [Abstract][Full Text] [Related]
8. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw. Rodrigues AC; Felby C; Gama M Bioresour Technol; 2014 Mar; 156():163-9. PubMed ID: 24502914 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain. Matano Y; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(5):2231-7. PubMed ID: 23184221 [TBL] [Abstract][Full Text] [Related]
10. Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. Singhania RR; Saini JK; Saini R; Adsul M; Mathur A; Gupta R; Tuli DK Bioresour Technol; 2014 Oct; 169():490-495. PubMed ID: 25086433 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Várnai A; Viikari L; Marjamaa K; Siika-aho M Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135 [TBL] [Abstract][Full Text] [Related]
12. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Shang Y; Su R; Huang R; Yang Y; Qi W; Li Q; He Z Appl Microbiol Biotechnol; 2014 Jun; 98(12):5765-74. PubMed ID: 24752845 [TBL] [Abstract][Full Text] [Related]
13. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production. Lau MJ; Lau MW; Gunawan C; Dale BE Appl Biochem Biotechnol; 2010 Nov; 162(7):1847-57. PubMed ID: 20419480 [TBL] [Abstract][Full Text] [Related]
14. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110 [TBL] [Abstract][Full Text] [Related]
15. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation. Parmar I; Rupasinghe HP Bioresour Technol; 2013 Feb; 130():613-20. PubMed ID: 23334018 [TBL] [Abstract][Full Text] [Related]
16. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Matano Y; Hasunuma T; Kondo A Bioresour Technol; 2012 Mar; 108():128-33. PubMed ID: 22265982 [TBL] [Abstract][Full Text] [Related]
17. Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Matsakas L; Christakopoulos P Bioresour Technol; 2013 Jan; 127():202-8. PubMed ID: 23131642 [TBL] [Abstract][Full Text] [Related]
18. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine. Tu M; Chandra RP; Saddler JN Biotechnol Prog; 2007; 23(5):1130-7. PubMed ID: 17718502 [TBL] [Abstract][Full Text] [Related]
19. Rational approach to optimize cellulase mixtures for hydrolysis of regenerated cellulose containing residual ionic liquid. Engel P; Krull S; Seiferheld B; Spiess AC Bioresour Technol; 2012 Jul; 115():27-34. PubMed ID: 22100231 [TBL] [Abstract][Full Text] [Related]
20. Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Aita GA; Salvi DA; Walker MS Bioresour Technol; 2011 Mar; 102(6):4444-8. PubMed ID: 21247758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]