These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

680 related articles for article (PubMed ID: 24045206)

  • 21. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
    Shen L; Wu H; Diep D; Yamaguchi S; D'Alessio AC; Fung HL; Zhang K; Zhang Y
    Cell; 2013 Apr; 153(3):692-706. PubMed ID: 23602152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tet2 Catalyzes Stepwise 5-Methylcytosine Oxidation by an Iterative and de novo Mechanism.
    Crawford DJ; Liu MY; Nabel CS; Cao XJ; Garcia BA; Kohli RM
    J Am Chem Soc; 2016 Jan; 138(3):730-3. PubMed ID: 26734843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Burning off DNA methylation: new evidence for oxygen-dependent DNA demethylation.
    Jurkowski TP; Jeltsch A
    Chembiochem; 2011 Nov; 12(17):2543-5. PubMed ID: 21998074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine.
    Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C
    J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are there specific readers of oxidized 5-methylcytosine bases?
    Song J; Pfeifer GP
    Bioessays; 2016 Oct; 38(10):1038-47. PubMed ID: 27480808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic Hydroxylation and Excision of Extended 5-Methylcytosine Analogues.
    Tomkuvienė M; Ikasalaitė D; Slyvka A; Rukšėnaitė A; Ravichandran M; Jurkowski TP; Bochtler M; Klimašauskas S
    J Mol Biol; 2020 Nov; 432(23):6157-6167. PubMed ID: 33065111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate DNA length regulates the activity of TET 5-methylcytosine dioxygenases.
    Bhattacharya C; Dey AS; Mukherji M
    Cell Biochem Funct; 2023 Aug; 41(6):704-712. PubMed ID: 37349892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the Biochemistry, Evolution, and Biotechnological Applications of the Ten-Eleven Translocation (TET) Enzymes.
    Parker MJ; Weigele PR; Saleh L
    Biochemistry; 2019 Feb; 58(6):450-467. PubMed ID: 30571101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.
    Kizaki S; Zou T; Li Y; Han YW; Suzuki Y; Harada Y; Sugiyama H
    Chemistry; 2016 Nov; 22(46):16598-16601. PubMed ID: 27689340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mechanistic overview of TET-mediated 5-methylcytosine oxidation.
    Ponnaluri VK; Maciejewski JP; Mukherji M
    Biochem Biophys Res Commun; 2013 Jun; 436(2):115-20. PubMed ID: 23727577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair.
    Wyatt MD
    Adv Cancer Res; 2013; 119():63-106. PubMed ID: 23870509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms.
    Li D; Guo B; Wu H; Tan L; Lu Q
    Cytogenet Genome Res; 2015; 146(3):171-80. PubMed ID: 26302812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story.
    Hill PW; Amouroux R; Hajkova P
    Genomics; 2014 Nov; 104(5):324-33. PubMed ID: 25173569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.
    Maiti A; Drohat AC
    J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single base resolution analysis of 5-methylcytosine and 5-hydroxymethylcytosine by RRBS and TAB-RRBS.
    Hahn MA; Li AX; Wu X; Pfeifer GP
    Methods Mol Biol; 2015; 1238():273-87. PubMed ID: 25421665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.
    Modrzejewska M; Gawronski M; Skonieczna M; Zarakowska E; Starczak M; Foksinski M; Rzeszowska-Wolny J; Gackowski D; Olinski R
    Free Radic Biol Med; 2016 Dec; 101():378-383. PubMed ID: 27833031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple and accurate single base resolution analysis of 5-hydroxymethylcytosine by catalytic oxidative bisulfite sequencing using micelle incarcerated oxidants.
    Fukuzawa S; Takahashi S; Tachibana K; Tajima S; Suetake I
    Bioorg Med Chem; 2016 Sep; 24(18):4254-4262. PubMed ID: 27460669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.