BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24045578)

  • 21. Enzyme-free fluorescence aptasensor for amplification detection of human thrombin via target-catalyzed hairpin assembly.
    Zheng AX; Wang JR; Li J; Song XR; Chen GN; Yang HH
    Biosens Bioelectron; 2012; 36(1):217-21. PubMed ID: 22560106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin.
    Jiao XX; Chen JR; Zhang XY; Luo HQ; Li NB
    Anal Biochem; 2013 Oct; 441(2):95-100. PubMed ID: 23896460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general approach to the construction of structure-switching reporters from RNA aptamers.
    Lau PS; Coombes BK; Li Y
    Angew Chem Int Ed Engl; 2010 Oct; 49(43):7938-42. PubMed ID: 20845339
    [No Abstract]   [Full Text] [Related]  

  • 24. Arrest of rolling circle amplification by protein-binding DNA aptamers.
    Wang L; Tram K; Ali MM; Salena BJ; Li J; Li Y
    Chemistry; 2014 Feb; 20(9):2420-4. PubMed ID: 24590539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.
    Chang H; Tang L; Wang Y; Jiang J; Li J
    Anal Chem; 2010 Mar; 82(6):2341-6. PubMed ID: 20180560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aptameric enzyme subunit for biosensing based on enzymatic activity measurement.
    Yoshida W; Sode K; Ikebukuro K
    Anal Chem; 2006 May; 78(10):3296-303. PubMed ID: 16689530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification.
    Xue Q; Wang Z; Wang L; Jiang W
    Bioconjug Chem; 2012 Apr; 23(4):734-9. PubMed ID: 22384977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A facile scanometric strategy for ultrasensitive detection of protein using aptamer-initiated rolling circle amplification.
    Cheng W; Ding L; Chen Y; Yan F; Ju H; Yin Y
    Chem Commun (Camb); 2010 Sep; 46(36):6720-2. PubMed ID: 20730209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-free aptamer-based sensor using abasic site-containing DNA and a nucleobase-specific fluorescent ligand.
    Xu Z; Morita K; Sato Y; Dai Q; Nishizawa S; Teramae N
    Chem Commun (Camb); 2009 Nov; (42):6445-7. PubMed ID: 19841804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics.
    Tokunaga T; Namiki S; Yamada K; Imaishi T; Nonaka H; Hirose K; Sando S
    J Am Chem Soc; 2012 Jun; 134(23):9561-4. PubMed ID: 22663380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ enzymatic silver enhancement based on functionalized graphene oxide and layer-by-layer assembled gold nanoparticles for ultrasensitive detection of thrombin.
    Wang Y; Yuan R; Chai Y; Yuan Y; Bai L
    Biosens Bioelectron; 2012; 38(1):50-4. PubMed ID: 22664382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemiluminescence DNA biosensor based on dual-amplification of thrombin and thiocyanuric acid-gold nanoparticle network.
    Li X; Li W; Zhang S
    Analyst; 2010 Feb; 135(2):332-6. PubMed ID: 20098767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aptamer-based optical probes with separated molecular recognition and signal transduction modules.
    Li N; Ho CM
    J Am Chem Soc; 2008 Feb; 130(8):2380-1. PubMed ID: 18247609
    [No Abstract]   [Full Text] [Related]  

  • 34. Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligation-rolling circle amplification.
    Zhao Y; Qi L; Chen F; Dong Y; Kong Y; Wu Y; Fan C
    Chem Commun (Camb); 2012 Apr; 48(27):3354-6. PubMed ID: 22361740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Piezoelectric biosensors for aptamer-protein interaction.
    Tombelli S; Bini A; Minunni M; Mascini M
    Methods Mol Biol; 2009; 504():23-36. PubMed ID: 19159088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenylene-ethynylene trication as an efficient fluorescent signal transducer in an aptasensor for potassium ion.
    Yuanboonlim W; Siripornnoppakhun W; Niamnont N; Rashatasakhon P; Vilaivan T; Sukwattanasinitt M
    Biosens Bioelectron; 2012 Mar; 33(1):17-22. PubMed ID: 22244670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification.
    Hu P; Zhu C; Jin L; Dong S
    Biosens Bioelectron; 2012 Apr; 34(1):83-7. PubMed ID: 22382074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binary (Split) Light-up Aptameric Sensors.
    Kolpashchikov DM; Spelkov AA
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):4988-4999. PubMed ID: 32208549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aptameric molecular switch for cascade signal amplification.
    Ma C; Zhao C; Ge Y; Shi C
    Clin Chem; 2012 Feb; 58(2):384-90. PubMed ID: 22173644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection.
    Huang DW; Niu CG; Qin PZ; Ruan M; Zeng GM
    Talanta; 2010 Nov; 83(1):185-9. PubMed ID: 21035662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.