BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 2404633)

  • 1. Benefit of exercise conditioning for patients with peripheral arterial disease.
    Hiatt WR; Regensteiner JG; Hargarten ME; Wolfel EE; Brass EP
    Circulation; 1990 Feb; 81(2):602-9. PubMed ID: 2404633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superiority of treadmill walking exercise versus strength training for patients with peripheral arterial disease. Implications for the mechanism of the training response.
    Hiatt WR; Wolfel EE; Meier RH; Regensteiner JG
    Circulation; 1994 Oct; 90(4):1866-74. PubMed ID: 7923674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle carnitine metabolism in patients with unilateral peripheral arterial disease.
    Hiatt WR; Wolfel EE; Regensteiner JG; Brass EP
    J Appl Physiol (1985); 1992 Jul; 73(1):346-53. PubMed ID: 1506390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease.
    Baker WB; Li Z; Schenkel SS; Chandra M; Busch DR; Englund EK; Schmitz KH; Yodh AG; Floyd TF; Mohler ER
    J Appl Physiol (1985); 2017 Dec; 123(6):1599-1609. PubMed ID: 28982943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calf raise exercise increases walking performance in patients with intermittent claudication.
    Van Schaardenburgh M; Wohlwend M; Rognmo Ø; Mattsson E
    J Vasc Surg; 2017 May; 65(5):1473-1482. PubMed ID: 28285932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Randomized controlled trial of supervised exercise to evaluate changes in cardiac function in patients with peripheral atherosclerotic disease.
    Hodges LD; Sandercock GR; Das SK; Brodie DA
    Clin Physiol Funct Imaging; 2008 Jan; 28(1):32-7. PubMed ID: 18005078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calf muscle oxygen saturation and the effects of supervised exercise training for intermittent claudication.
    Beckitt TA; Day J; Morgan M; Lamont PM
    J Vasc Surg; 2012 Aug; 56(2):470-5. PubMed ID: 22503174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved functional outcomes following exercise rehabilitation in patients with intermittent claudication.
    Gardner AW; Katzel LI; Sorkin JD; Killewich LA; Ryan A; Flinn WR; Goldberg AP
    J Gerontol A Biol Sci Med Sci; 2000 Oct; 55(10):M570-7. PubMed ID: 11034229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PoleStriding exercise and vitamin E for management of peripheral vascular disease.
    Collins EG; Edwin Langbein W; Orebaugh C; Bammert C; Hanson K; Reda D; Edwards LC; Littooy FN
    Med Sci Sports Exerc; 2003 Mar; 35(3):384-93. PubMed ID: 12618567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carnitine and peripheral arterial disease.
    Hiatt WR
    Ann N Y Acad Sci; 2004 Nov; 1033():92-8. PubMed ID: 15591006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ergometric performance during exercise training in men with intermittent claudication.
    Figoni SF; Kunkel CF; Scremin AM; Scremin OU; Cohen B
    PM R; 2010 Jun; 2(6):528-36. PubMed ID: 20630439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carnitine metabolism during exercise in patients with peripheral vascular disease.
    Hiatt WR; Nawaz D; Brass EP
    J Appl Physiol (1985); 1987 Jun; 62(6):2383-7. PubMed ID: 3610932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease.
    Hiatt WR; Regensteiner JG; Wolfel EE; Carry MR; Brass EP
    J Appl Physiol (1985); 1996 Aug; 81(2):780-8. PubMed ID: 8872646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training improves functional status in patients with peripheral arterial disease.
    Regensteiner JG; Steiner JF; Hiatt WR
    J Vasc Surg; 1996 Jan; 23(1):104-15. PubMed ID: 8558725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional benefits of peripheral vascular bypass surgery for patients with intermittent claudication.
    Regensteiner JG; Hargarten ME; Rutherford RB; Hiatt WR
    Angiology; 1993 Jan; 44(1):1-10. PubMed ID: 8424578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of supervised exercise therapy for intermittent claudication on lower limb lean mass.
    Vun SV; Miller MD; Delaney CL; Allan RB; Spark JI
    J Vasc Surg; 2016 Dec; 64(6):1763-1769. PubMed ID: 27633168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limb-specific and cross-transfer effects of arm-crank exercise training in patients with symptomatic peripheral arterial disease.
    Tew G; Nawaz S; Zwierska I; Saxton JM
    Clin Sci (Lond); 2009 Sep; 117(12):405-13. PubMed ID: 19388883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hospital vs home-based exercise rehabilitation for patients with peripheral arterial occlusive disease.
    Regensteiner JG; Meyer TJ; Krupski WC; Cranford LS; Hiatt WR
    Angiology; 1997 Apr; 48(4):291-300. PubMed ID: 9112877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral arterial disease and intermittent claudication: efficacy of short-term upper body strength training, dynamic exercise training, and advice to exercise at home.
    Parr BM; Noakes TD; Derman EW
    S Afr Med J; 2009 Nov; 99(11):800-4. PubMed ID: 20218480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of arm-ergometry versus treadmill exercise training to improve walking distance in patients with claudication.
    Treat-Jacobson D; Bronas UG; Leon AS
    Vasc Med; 2009 Aug; 14(3):203-13. PubMed ID: 19651669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.