BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24046418)

  • 1. Effect of dietary lysine on hepatic lysine catabolism in broilers.
    Kiess AS; Manangi MK; Cleveland BM; Wilson ME; Blemings KP
    Poult Sci; 2013 Oct; 92(10):2705-12. PubMed ID: 24046418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue distribution of indices of lysine catabolism in growing swine.
    Gatrell SK; Berg LE; Barnard JT; Grimmett JG; Barnes KM; Blemings KP
    J Anim Sci; 2013 Jan; 91(1):238-47. PubMed ID: 23048139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-aminoadipate delta-semialdehyde synthase mRNA knockdown reduces the lysine requirement of a mouse hepatic cell line.
    Cleveland BM; Kiess AS; Blemings KP
    J Nutr; 2008 Nov; 138(11):2143-7. PubMed ID: 18936211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-induced alterations in murine hepatic alpha-aminoadipate delta-semialdehyde synthase activity are mediated posttranslationally.
    Kiess AS; Cleveland BM; Wilson ME; Klandorf H; Blemings KP
    Nutr Res; 2008 Dec; 28(12):859-65. PubMed ID: 19083499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine α-ketoglutarate reductase, but not saccharopine dehydrogenase, is subject to substrate inhibition in pig liver.
    Pink DB; Gatrell SK; Elango R; Turchinsky J; Kiess AS; Blemings KP; Dixon WT; Ball RO
    Nutr Res; 2011 Jul; 31(7):544-54. PubMed ID: 21840471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of free glutamate content in meat by dietary lysine in broilers.
    Watanabe G; Kobayashi H; Shibata M; Kubota M; Kadowaki M; Fujimura S
    Anim Sci J; 2015 Apr; 86(4):435-42. PubMed ID: 25491790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial lysine uptake limits hepatic lysine oxidation in rats fed diets containing 5, 20 or 60% casein.
    Blemings KP; Crenshaw TD; Benevenga NJ
    J Nutr; 1998 Dec; 128(12):2427-34. PubMed ID: 9868191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes.
    Serrano GC; Rezende e Silva Figueira T; Kiyota E; Zanata N; Arruda P
    FEBS Lett; 2012 Mar; 586(6):905-11. PubMed ID: 22449979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues.
    Moulin M; Deleu C; Larher F; Bouchereau A
    Plant Physiol Biochem; 2006; 44(7-9):474-82. PubMed ID: 17023168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysine alpha-ketoglutarate reductase and lysine oxidation are distributed in the extrahepatic tissues of chickens.
    Manangi MK; Hoewing SF; Engels JG; Higgins AD; Killefer J; Wilson ME; Blemings KP
    J Nutr; 2005 Jan; 135(1):81-5. PubMed ID: 15623837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains.
    Zhu X; Tang G; Galili G
    J Biol Chem; 2002 Dec; 277(51):49655-61. PubMed ID: 12393892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dietary iron concentration, age, and length of iron feeding on feed intake and tissue iron concentration of broiler chicks for use as a bioassay of supplemental iron sources.
    Cao J; Luo XG; Henry PR; Ammerman CB; Littell RC; Miles RD
    Poult Sci; 1996 Apr; 75(4):495-504. PubMed ID: 8786939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite AtLKR/SDH locus.
    Stepansky A; Yao Y; Tang G; Galili G
    J Exp Bot; 2005 Feb; 56(412):525-36. PubMed ID: 15569707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme.
    Anderson OD; Coleman-Derr D; Gu YQ; Heath S
    BMC Plant Biol; 2010 Jun; 10():113. PubMed ID: 20565711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase.
    Zhu X; Tang G; Galili G
    Biochem J; 2000 Oct; 351(Pt 1):215-20. PubMed ID: 10998364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic manipulation of lysine catabolism in maize kernels.
    Reyes AR; Bonin CP; Houmard NM; Huang S; Malvar TM
    Plant Mol Biol; 2009 Jan; 69(1-2):81-9. PubMed ID: 18839315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dietary potassium on lysine metabolism in the chick.
    Scott RL; Austic RE
    J Nutr; 1978 Jan; 108(1):137-44. PubMed ID: 619034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis.
    Tang G; Miron D; Zhu-Shimoni JX; Galili G
    Plant Cell; 1997 Aug; 9(8):1305-16. PubMed ID: 9286108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Metabolite Saccharopine Impairs Neuronal Development by Inhibiting the Neurotrophic Function of Glucose-6-Phosphate Isomerase.
    Guo Y; Wu J; Wang M; Wang X; Jian Y; Yang C; Guo W
    J Neurosci; 2022 Mar; 42(13):2631-2646. PubMed ID: 35135854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel composite locus of Arabidopsis encoding two polypeptides with metabolically related but distinct functions in lysine catabolism.
    Tang G; Zhu X; Tang X; Galili G
    Plant J; 2000 Jul; 23(2):195-203. PubMed ID: 10929113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.