BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24047109)

  • 1. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation.
    Kok D; Firkins PJ; Wapstra FH; Veldhuizen AG
    BMC Musculoskelet Disord; 2013 Sep; 14():269. PubMed ID: 24047109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel.
    Christensen FB; Dalstra M; Sejling F; Overgaard S; Bünger C
    Eur Spine J; 2000 Apr; 9(2):97-103. PubMed ID: 10823424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of rod contouring on spinal construct fatigue strength.
    Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.
    Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA
    J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.
    Nguyen TQ; Buckley JM; Ames C; Deviren V
    Proc Inst Mech Eng H; 2011 Feb; 225(2):194-8. PubMed ID: 21428153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Memory Metal Spinal System in a Posterior Lumbar Interbody Fusion (PLIF) Procedure: A Prospective, Non-Comparative Study to Evaluate the Safety and Performance.
    Kok D; Grevitt M; Wapstra F; Veldhuizen A
    Open Orthop J; 2012; 6():220-5. PubMed ID: 22754599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical performance of thoracolumbosacral pedicle screw systems: An analysis of data submitted to the Food and Drug Administration.
    Peck JH; Cadel E; Palepu V; Ferrell BM; Warner CH
    J Biomech; 2021 Aug; 125():110551. PubMed ID: 34182324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ti2448 pedicle screw system augmentation for posterior lumbar interbody fusion.
    Wang Z; Fu S; Wu ZX; Zhang Y; Lei W
    Spine (Phila Pa 1976); 2013 Nov; 38(23):2008-15. PubMed ID: 23921332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitinol Memory Rods Versus Titanium Rods: A Biomechanical Comparison of Posterior Spinal Instrumentation in a Synthetic Corpectomy Model.
    Massey PA; Hoge S; Nelson BG; Ogden AL; Mody MG; Myers M; Bilderback K; Solitro G; Barton RS
    Global Spine J; 2021 Apr; 11(3):277-282. PubMed ID: 32875865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical stability according to different configurations of screws and rods.
    Ha KY; Hwang SC; Whang TH
    J Spinal Disord Tech; 2013 May; 26(3):155-60. PubMed ID: 22105105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of constrained dual-screw anchorage on holding strength and the resistance to cyclic loading in anterior spinal deformity surgery: a comparative biomechanical study.
    Koller H; Fierlbeck J; Auffarth A; Niederberger A; Stephan D; Hitzl W; Augat P; Zenner J; Blocher M; Blocher M; Resch H; Mayer M
    Spine (Phila Pa 1976); 2014 Mar; 39(6):E390-8. PubMed ID: 24384666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices.
    Ahn YH; Chen WM; Lee KY; Park KW; Lee SJ
    Biomed Mater; 2008 Dec; 3(4):044101. PubMed ID: 19029615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.
    Weis JC; Cunningham BW; Kanayama M; Parker L; McAfee PC
    Spine (Phila Pa 1976); 1996 Sep; 21(18):2108-14. PubMed ID: 8893435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis.
    Slucky AV; Brodke DS; Bachus KN; Droge JA; Braun JT
    Spine J; 2006; 6(1):78-85. PubMed ID: 16413452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inverse effects of load transfer and load sharing on axial compressive stiffness.
    Haher TR; Yeung AW; Ottaviano DM; Merola AA; Caruso SA
    Spine J; 2001; 1(5):324-9; discussion 330. PubMed ID: 14588309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery.
    Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation.
    Murakami H; Tsai KJ; Attallah-Wasif ES; Yamazaki K; Shimamura T; Hutton WC
    Spine (Phila Pa 1976); 2006 Apr; 31(9):967-71. PubMed ID: 16641771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.