These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24047327)

  • 1. Solution-based stoichiometric control over charge transport in nanocrystalline CdSe devices.
    Kim DK; Fafarman AT; Diroll BT; Chan SH; Gordon TR; Murray CB; Kagan CR
    ACS Nano; 2013 Oct; 7(10):8760-70. PubMed ID: 24047327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.
    Kim DK; Lai Y; Vemulkar TR; Kagan CR
    ACS Nano; 2011 Dec; 5(12):10074-83. PubMed ID: 22084980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.
    Hu Z; Zhang X; Xie C; Wu C; Zhang X; Bian L; Wu Y; Wang L; Zhang Y; Jie J
    Nanoscale; 2011 Nov; 3(11):4798-803. PubMed ID: 21952747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices.
    Zhou YS; Wang K; Han W; Rai SC; Zhang Y; Ding Y; Pan C; Zhang F; Zhou W; Wang ZL
    ACS Nano; 2012 Jul; 6(7):6478-82. PubMed ID: 22734964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale, solution-phase growth of semiconductor nanocrystals into ultralong one-dimensional arrays and study of their electrical properties.
    Ma Y; Xue M; Shi J; Tan Y
    Nanoscale; 2014 Jun; 6(12):6828-36. PubMed ID: 24827004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased carrier mobility and lifetime in CdSe quantum dot thin films through surface trap passivation and doping.
    Straus DB; Goodwin ED; Gaulding EA; Muramoto S; Murray CB; Kagan CR
    J Phys Chem Lett; 2015 Nov; 6(22):4605-9. PubMed ID: 26536065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drift velocity saturation in field-effect transistors based on single CdSe nanowires.
    Jin W; Yang X
    Phys Chem Chem Phys; 2023 Oct; 25(39):26455-26460. PubMed ID: 37655488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.
    Oh SJ; Berry NE; Choi JH; Gaulding EA; Paik T; Hong SH; Murray CB; Kagan CR
    ACS Nano; 2013 Mar; 7(3):2413-21. PubMed ID: 23368728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote doping and Schottky barrier formation in strongly quantum confined single PbSe nanowire field-effect transistors.
    Oh SJ; Kim DK; Kagan CR
    ACS Nano; 2012 May; 6(5):4328-34. PubMed ID: 22512336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires.
    Wang F; Seo JH; Bayerl D; Shi J; Mi H; Ma Z; Zhao D; Shuai Y; Zhou W; Wang X
    Nanotechnology; 2011 Jun; 22(22):225602. PubMed ID: 21454935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air-Stable CuInSe
    Wang H; Butler DJ; Straus DB; Oh N; Wu F; Guo J; Xue K; Lee JD; Murray CB; Kagan CR
    ACS Nano; 2019 Feb; 13(2):2324-2333. PubMed ID: 30707549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors.
    Zou X; Liu X; Wang C; Jiang Y; Wang Y; Xiao X; Ho JC; Li J; Jiang C; Xiong Q; Liao L
    ACS Nano; 2013 Jan; 7(1):804-10. PubMed ID: 23228028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-based II-VI core/shell nanowire heterostructures.
    Goebl JA; Black RW; Puthussery J; Giblin J; Kosel TH; Kuno M
    J Am Chem Soc; 2008 Nov; 130(44):14822-33. PubMed ID: 18847191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced performance of In
    Wu L; Xu J; Li Q; Fan Z; Mei F; Zhou Y; Yan J; Chen Y
    Nanotechnology; 2020 Aug; 31(35):355703. PubMed ID: 32357357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum-interference transport through surface layers of indium-doped ZnO nanowires.
    Chiu SP; Lu JG; Lin JJ
    Nanotechnology; 2013 Jun; 24(24):245203. PubMed ID: 23689960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of diameter dependent carrier distribution in nanowire-based transistors.
    Schulze A; Hantschel T; Eyben P; Verhulst AS; Rooyackers R; Vandooren A; Mody J; Nazir A; Leonelli D; Vandervorst W
    Nanotechnology; 2011 May; 22(18):185701. PubMed ID: 21415466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and Electrical Characterization of Hybrid Core/Shell InAs/CdSe Nanowires.
    Kaladzhian M; von den Driesch N; Demarina N; Povstugar I; Zimmermann E; Jansen MM; Bae JH; Krause C; Bennemann B; Grützmacher D; Schäpers T; Pawlis A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):11035-11042. PubMed ID: 38377460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface Passivation and Trap Reduction via a Solution-Based Method for Near-Zero Hysteresis Nanowire Field-Effect Transistors.
    Constantinou M; Stolojan V; Rajeev KP; Hinder S; Fisher B; Bogart TD; Korgel BA; Shkunov M
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22115-20. PubMed ID: 26402417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air.
    Choi JH; Oh SJ; Lai Y; Kim DK; Zhao T; Fafarman AT; Diroll BT; Murray CB; Kagan CR
    ACS Nano; 2013 Sep; 7(9):8275-83. PubMed ID: 23952742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.