BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24047541)

  • 1. Thermoresponsive biodegradable HEMA-lactate-Dextran-co-NIPA cryogels for controlled release of simvastatin.
    Bölgen N; Aguilar MR; Fernández Mdel M; Gonzalo-Flores S; Villar-Rodil S; San Román J; Pişkin E
    Artif Cells Nanomed Biotechnol; 2015 Feb; 43(1):40-9. PubMed ID: 24047541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering.
    Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E
    J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic cryogels for DNA adsorption: effect of embedding of monosize microbeads into cryogel network on their adsorptive performances.
    Emin Çorman M; Bereli N; Özkara S; Uzun L; Denizli A
    Biomed Chromatogr; 2013 Nov; 27(11):1524-31. PubMed ID: 23780689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects.
    Bölgen N; Korkusuz P; Vargel İ; Kılıç E; Güzel E; Çavuşoğlu T; Uçkan D; Pişkin E
    Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):70-7. PubMed ID: 23477355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous Biodegradable Cryogels of Synthetic Poly(α-amino acids).
    Sedlačík T; Proks V; Šlouf M; Dušková-Smrčková M; Studenovská H; Rypáček F
    Biomacromolecules; 2015 Nov; 16(11):3455-65. PubMed ID: 26474357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryogelation for preparation of novel biodegradable tissue-engineering scaffolds.
    Bölgen N; Plieva F; Galaev IY; Mattiasson B; Pişkin E
    J Biomater Sci Polym Ed; 2007; 18(9):1165-79. PubMed ID: 17931506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model.
    Bölgen N; Vargel I; Korkusuz P; Güzel E; Plieva F; Galaev I; Matiasson B; Pişkin E
    J Biomed Mater Res A; 2009 Oct; 91(1):60-8. PubMed ID: 18690660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material.
    Sahiner N; Sagbas S; Sahiner M; Silan C
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):317-326. PubMed ID: 27770897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensitive macroporous cryogels functionalized with bioactive chitosan/bemiparin nanoparticles.
    Peniche H; Reyes-Ortega F; Aguilar MR; Rodríguez G; Abradelo C; García-Fernández L; Peniche C; San Román J
    Macromol Biosci; 2013 Nov; 13(11):1556-67. PubMed ID: 23956200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(HEMA-co-NBMI) monolithic cryogel columns for IgG adsorption.
    Uygun M; Şenay RH; Avcıbaşı N; Akgöl S
    Appl Biochem Biotechnol; 2014 Feb; 172(3):1574-84. PubMed ID: 24233543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin.
    Berillo D; Elowsson L; Kirsebom H
    Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of thiophilic cryogels with 2-mercapto ethanol as the ligand for IgG purification.
    Bakhshpour M; Bereli N; Şenel S
    Colloids Surf B Biointerfaces; 2014 Jan; 113():261-8. PubMed ID: 24103505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional ingrowth of bone cells within biodegradable cryogel scaffolds in bioreactors at different regimes.
    Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E
    Tissue Eng Part A; 2008 Oct; 14(10):1743-50. PubMed ID: 18823277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH; Liao HT; Chen JP
    Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosensitivity and release from poly N-isopropylacrylamide-polylactide copolymers.
    Chearúil FN; Corrigan OI
    Int J Pharm; 2009 Jan; 366(1-2):21-30. PubMed ID: 18809480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs.
    Dragan ES; Cocarta AI
    ACS Appl Mater Interfaces; 2016 May; 8(19):12018-30. PubMed ID: 27115698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatin cryogels crosslinked with oxidized dextran and containing freshly formed hydroxyapatite as potential bone tissue-engineering scaffolds.
    Inci I; Kirsebom H; Galaev IY; Mattiasson B; Piskin E
    J Tissue Eng Regen Med; 2013 Jul; 7(7):584-8. PubMed ID: 22733656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of supermacroporous monolithic hydrophobic cryogel in capturing of albumin.
    Avcibaşi N; Uygun M; Corman ME; Akgöl S; Denizli A
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2232-43. PubMed ID: 20521122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.
    Aktaş Uygun D; Uygun M; Akgöl S; Denizli A
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():379-85. PubMed ID: 25746283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of nicotinamide decorated polymeric cryogels as heavy metal sweeper.
    Bilgin E; Erol K; Köse K; Köse DA
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27614-27627. PubMed ID: 30056537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.