These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24047676)

  • 1. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland.
    Horttanainen M; Teirasvuo N; Kapustina V; Hupponen M; Luoranen M
    Waste Manag; 2013 Dec; 33(12):2680-6. PubMed ID: 24047676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.
    Cheng H; Hu Y
    Bioresour Technol; 2010 Jun; 101(11):3816-24. PubMed ID: 20137912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of renewable energy yield from mixed waste material from the use of novel image analysis methods.
    Wagland ST; Dudley R; Naftaly M; Longhurst PJ
    Waste Manag; 2013 Nov; 33(11):2449-56. PubMed ID: 23876718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.
    Shao LM; Ma ZH; Zhang H; Zhang DQ; He PJ
    Waste Manag; 2010 Jul; 30(7):1165-70. PubMed ID: 20106649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Updating and testing of a Finnish method for mixed municipal solid waste composition studies.
    Liikanen M; Sahimaa O; Hupponen M; Havukainen J; Sorvari J; Horttanainen M
    Waste Manag; 2016 Jun; 52():25-33. PubMed ID: 27021698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical composition of material fractions in Danish household waste.
    Riber C; Petersen C; Christensen TH
    Waste Manag; 2009 Apr; 29(4):1251-7. PubMed ID: 19062265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence of zinc in Swedish waste fuels.
    Jones F; Bisaillon M; Lindberg D; Hupa M
    Waste Manag; 2013 Dec; 33(12):2675-9. PubMed ID: 24011784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.
    Yang N; Zhang H; Chen M; Shao LM; He PJ
    Waste Manag; 2012 Dec; 32(12):2552-60. PubMed ID: 22796016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility analysis of municipal solid waste mass burning in the Region of East Macedonia--Thrace in Greece.
    Athanasiou CJ; Tsalkidis DA; Kalogirou E; Voudrias EA
    Waste Manag Res; 2015 Jun; 33(6):561-9. PubMed ID: 26060234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Areas on which to focus when seeking to reduce the greenhouse gas emissions of commercial waste management. A case study of a hypermarket, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2018 Jun; 76():1-18. PubMed ID: 29576513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition.
    Lin X; Wang F; Chi Y; Huang Q; Yan J
    Waste Manag; 2015 Feb; 36():24-32. PubMed ID: 25536862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.
    Burnley S; Phillips R; Coleman T; Rampling T
    Waste Manag; 2011; 31(9-10):1949-59. PubMed ID: 21600755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.
    Tabata T; Tsai P
    Waste Manag Res; 2016 Feb; 34(2):148-55. PubMed ID: 26628053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.
    Tang Z; Chen X; Liu D; Zhuang Y; Ye M; Sheng H; Xu S
    J Environ Sci (China); 2016 Oct; 48():169-178. PubMed ID: 27745662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan.
    Azam M; Jahromy SS; Raza W; Raza N; Lee SS; Kim KH; Winter F
    Environ Int; 2020 Jan; 134():105291. PubMed ID: 31730999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of commercial and industrial waste in energy recovery systems - A UK preliminary study.
    Lupa CJ; Ricketts LJ; Sweetman A; Herbert BM
    Waste Manag; 2011 Aug; 31(8):1759-64. PubMed ID: 21530223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gases emission from municipal waste management: The role of separate collection.
    Calabrò PS
    Waste Manag; 2009 Jul; 29(7):2178-87. PubMed ID: 19318239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.