These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24047993)

  • 1. Measuring the lamellarity of giant lipid vesicles with differential interference contrast microscopy.
    McPhee CI; Zoriniants G; Langbein W; Borri P
    Biophys J; 2013 Sep; 105(6):1414-20. PubMed ID: 24047993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method.
    Chiba M; Miyazaki M; Ishiwata S
    Biophys J; 2014 Jul; 107(2):346-354. PubMed ID: 25028876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilamellar nanovesicles show distinct mechanical properties depending on their degree of lamellarity.
    Vorselen D; Marchetti M; López-Iglesias C; Peters PJ; Roos WH; Wuite GJL
    Nanoscale; 2018 Mar; 10(11):5318-5324. PubMed ID: 29504612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroformation of giant vesicles from an inverse phase precursor.
    Mertins O; da Silveira NP; Pohlmann AR; Schröder AP; Marques CM
    Biophys J; 2009 Apr; 96(7):2719-26. PubMed ID: 19348754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant vesicles: preparations and applications.
    Walde P; Cosentino K; Engel H; Stano P
    Chembiochem; 2010 May; 11(7):848-65. PubMed ID: 20336703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties.
    Dimova R
    Annu Rev Biophys; 2019 May; 48():93-119. PubMed ID: 30811220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study.
    Bagatolli LA; Parasassi T; Gratton E
    Chem Phys Lipids; 2000 Apr; 105(2):135-47. PubMed ID: 10823462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Giant Unilamellar Vesicle Fusion Products by High-Throughput Image Analysis.
    Caliari A; Hanczyc MM; Imai M; Xu J; Yomo T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-formation and fluorescence microscopy of giant vesicles with coexisting liquid phases.
    Veatch SL
    Methods Mol Biol; 2007; 398():59-72. PubMed ID: 18214374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of a nanoscopic-to-macroscopic transition: modulated phases in four-component DSPC/DOPC/POPC/Chol giant unilamellar vesicles.
    Konyakhina TM; Goh SL; Amazon J; Heberle FA; Wu J; Feigenson GW
    Biophys J; 2011 Jul; 101(2):L8-10. PubMed ID: 21767476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How To Characterize Individual Nanosize Liposomes with Simple Self-Calibrating Fluorescence Microscopy.
    Mortensen KI; Tassone C; Ehrlich N; Andresen TL; Flyvbjerg H
    Nano Lett; 2018 May; 18(5):2844-2851. PubMed ID: 29614230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles.
    García-Sáez AJ; Carrer DC; Schwille P
    Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of membrane rigidity on trapped unilamellar phospholipid vesicles by using differential confocal microscopy.
    Liu TH; Xiao JL; Lee CH; Lin JY
    Appl Opt; 2011 Jul; 50(19):3311-5. PubMed ID: 21743534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Mechanism of Bilayer Separation by Extrusion, or Why Your LUVs Are Not Really Unilamellar.
    Scott HL; Skinkle A; Kelley EG; Waxham MN; Levental I; Heberle FA
    Biophys J; 2019 Oct; 117(8):1381-1386. PubMed ID: 31586522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Access to Giant Unilamellar Liposomes with Upper Size Control: Membrane-Gated, Gel-Assisted Lipid Hydration.
    Liu Z; Cui J; Zhan W
    Langmuir; 2020 Nov; 36(44):13193-13200. PubMed ID: 33125237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant lipid vesicles under electric field pulses assessed by non invasive imaging.
    Mauroy C; Portet T; Winterhalder M; Bellard E; Blache MC; Teissié J; Zumbusch A; Rols MP
    Bioelectrochemistry; 2012 Oct; 87():253-9. PubMed ID: 22560131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.