These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24048019)

  • 1. Targeting transcription factors: promising new strategies for cancer therapy.
    Yeh JE; Toniolo PA; Frank DA
    Curr Opin Oncol; 2013 Nov; 25(6):652-8. PubMed ID: 24048019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer.
    Zerbini LF; Wang Y; Cho JY; Libermann TA
    Cancer Res; 2003 May; 63(9):2206-15. PubMed ID: 12727841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy.
    Germain D; Frank DA
    Clin Cancer Res; 2007 Oct; 13(19):5665-9. PubMed ID: 17908954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA interference in cancer.
    Gartel AL; Kandel ES
    Biomol Eng; 2006 Mar; 23(1):17-34. PubMed ID: 16466964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Down-regulation of signal transducer and activator of transcription 3 expression using vector-based small interfering RNAs suppresses growth of human prostate tumor in vivo.
    Gao L; Zhang L; Hu J; Li F; Shao Y; Zhao D; Kalvakolanu DV; Kopecko DJ; Zhao X; Xu DQ
    Clin Cancer Res; 2005 Sep; 11(17):6333-41. PubMed ID: 16144938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (hTERT) expression in human cancer and primary cells.
    Konnikova L; Simeone MC; Kruger MM; Kotecki M; Cochran BH
    Cancer Res; 2005 Aug; 65(15):6516-20. PubMed ID: 16061629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene methylation in gastric cancer.
    Qu Y; Dang S; Hou P
    Clin Chim Acta; 2013 Sep; 424():53-65. PubMed ID: 23669186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogene dependency and the potential of targeted RNAi-based anti-cancer therapy.
    Yan R; Hallam A; Stockley PG; Boyes J
    Biochem J; 2014 Jul; 461(1):1-13. PubMed ID: 24927119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STAT proteins: novel molecular targets for cancer drug discovery.
    Turkson J; Jove R
    Oncogene; 2000 Dec; 19(56):6613-26. PubMed ID: 11426647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers.
    Sabbah M; Emami S; Redeuilh G; Julien S; Prévost G; Zimber A; Ouelaa R; Bracke M; De Wever O; Gespach C
    Drug Resist Updat; 2008; 11(4-5):123-51. PubMed ID: 18718806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects.
    Gao H; Xiao J; Sun Q; Lin H; Bai Y; Yang L; Yang B; Wang H; Wang Z
    Mol Pharmacol; 2006 Nov; 70(5):1621-9. PubMed ID: 16936227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.
    De Bacco F; Luraghi P; Medico E; Reato G; Girolami F; Perera T; Gabriele P; Comoglio PM; Boccaccio C
    J Natl Cancer Inst; 2011 Apr; 103(8):645-61. PubMed ID: 21464397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. microRNAs as pharmacological targets in cancer.
    Soriano A; Jubierre L; Almazán-Moga A; Molist C; Roma J; de Toledo JS; Gallego S; Segura MF
    Pharmacol Res; 2013 Sep; 75():3-14. PubMed ID: 23537752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity.
    Kulesza DW; Carré T; Chouaib S; Kaminska B
    Exp Cell Res; 2013 Feb; 319(4):506-16. PubMed ID: 23149124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling.
    Feng Y; Lee N; Fearon ER
    Cancer Res; 2003 Dec; 63(24):8726-34. PubMed ID: 14695187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells.
    Lee SO; Lou W; Qureshi KM; Mehraein-Ghomi F; Trump DL; Gao AC
    Prostate; 2004 Sep; 60(4):303-9. PubMed ID: 15264241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic opportunities and challenges in cancer.
    Best JD; Carey N
    Drug Discov Today; 2010 Jan; 15(1-2):65-70. PubMed ID: 19897050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Stat3 in regulating p53 expression and function.
    Niu G; Wright KL; Ma Y; Wright GM; Huang M; Irby R; Briggs J; Karras J; Cress WD; Pardoll D; Jove R; Chen J; Yu H
    Mol Cell Biol; 2005 Sep; 25(17):7432-40. PubMed ID: 16107692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer therapy using oligonucleotide-based STAT3 inhibitors: will they deliver?
    Kortylewski M; Nechaev S
    Ther Deliv; 2014 Mar; 5(3):239-42. PubMed ID: 24592948
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.