These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 24048157)
1. Extended disease resistance emerging from the faecal nest of a subterranean termite. Chouvenc T; Efstathion CA; Elliott ML; Su NY Proc Biol Sci; 2013 Nov; 280(1770):20131885. PubMed ID: 24048157 [TBL] [Abstract][Full Text] [Related]
2. The Termite Fecal Nest: A Framework for the Opportunistic Acquisition of Beneficial Soil Streptomyces (Actinomycetales: Streptomycetaceae). Chouvenc T; Elliott ML; Šobotník J; Efstathion CA; Su NY Environ Entomol; 2018 Dec; 47(6):1431-1439. PubMed ID: 30321327 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial Activity of Actinobacteria Isolated From the Guts of Subterranean Termites. Arango RA; Carlson CM; Currie CR; McDonald BR; Book AJ; Green F; Lebow NK; Raffa KF Environ Entomol; 2016 Dec; 45(6):1415-1423. PubMed ID: 28028088 [TBL] [Abstract][Full Text] [Related]
4. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites. Visser AA; Nobre T; Currie CR; Aanen DK; Poulsen M Microb Ecol; 2012 May; 63(4):975-85. PubMed ID: 22173371 [TBL] [Abstract][Full Text] [Related]
5. Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes. Sujada N; Sungthong R; Lumyong S Microbes Environ; 2014; 29(2):211-9. PubMed ID: 24909709 [TBL] [Abstract][Full Text] [Related]
6. When subterranean termites challenge the rules of fungal epizootics. Chouvenc T; Su NY PLoS One; 2012; 7(3):e34484. PubMed ID: 22470575 [TBL] [Abstract][Full Text] [Related]
7. First Neotropical record of the association between brown sclerotium-forming fungi and termite eggs in a nest of Coptotermes gestroi (Blattaria, Isoptera, Rhinotermitidae). Costa-Leonardo AM; Janei V; da Silva IB Naturwissenschaften; 2022 Aug; 109(5):45. PubMed ID: 35980473 [TBL] [Abstract][Full Text] [Related]
8. Chemical Interaction among Termite-Associated Microbes. Mevers E; Chouvenc T; Su NY; Clardy J J Chem Ecol; 2017 Dec; 43(11-12):1078-1085. PubMed ID: 29134406 [TBL] [Abstract][Full Text] [Related]
9. Comparative Genomics Reveals Prophylactic and Catabolic Capabilities of Murphy R; Benndorf R; de Beer ZW; Vollmers J; Kaster AK; Beemelmanns C; Poulsen M mSphere; 2021 Mar; 6(2):. PubMed ID: 33658277 [No Abstract] [Full Text] [Related]
10. Prospects for the biological control of subterranean termites (Isoptera: rhinotermitidae), with special reference to Coptotermes formosanus. Culliney TW; Grace JK Bull Entomol Res; 2000 Feb; 90(1):9-21. PubMed ID: 10948359 [TBL] [Abstract][Full Text] [Related]
11. Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): a Strategy to Improve Hemicellulose Digestibility? Menezes L; Alvarez TM; Persinoti GF; Franco JP; Squina F; Moreira EA; Alvaredo Paixão DA; Costa-Leonardo AM; da Silva VX; Clerici MTPS; Arab A Microb Ecol; 2018 Aug; 76(2):492-505. PubMed ID: 29270662 [TBL] [Abstract][Full Text] [Related]
12. Resource competition between two fungal parasites in subterranean termites. Chouvenc T; Efstathion CA; Elliott ML; Su NY Naturwissenschaften; 2012 Nov; 99(11):949-58. PubMed ID: 23086391 [TBL] [Abstract][Full Text] [Related]
14. The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. Huang H; Ren L; Li H; Schmidt A; Gershenzon J; Lu Y; Cheng D PLoS Pathog; 2020 Sep; 16(9):e1008800. PubMed ID: 32913361 [TBL] [Abstract][Full Text] [Related]
15. Isolation and assessment of gut bacteria from the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae), for paratransgenesis research and application. Tikhe CV; Sethi A; Delatte J; Husseneder C Insect Sci; 2017 Feb; 24(1):93-102. PubMed ID: 26477889 [TBL] [Abstract][Full Text] [Related]
16. Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera: Vespidae: Polistinae) nests. Madden AA; Grassetti A; Soriano JA; Starks PT Environ Entomol; 2013 Aug; 42(4):703-10. PubMed ID: 23905732 [TBL] [Abstract][Full Text] [Related]
17. Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach. Visser AA; Ros VI; De Beer ZW; Debets AJ; Hartog E; Kuyper TW; Laessøe T; Slippers B; Aanen DK Mol Ecol; 2009 Feb; 18(3):553-67. PubMed ID: 19161474 [TBL] [Abstract][Full Text] [Related]
18. Reduced Environmental Microbial Diversity on the Cuticle and in the Galleries of a Subterranean Termite Compared to Surrounding Soil. Aguero CM; Eyer PA; Crippen TL; Vargo EL Microb Ecol; 2021 May; 81(4):1054-1063. PubMed ID: 33399932 [TBL] [Abstract][Full Text] [Related]
19. Molecular signatures of nicotinoid-pathogen synergy in the termite gut. Sen R; Raychoudhury R; Cai Y; Sun Y; Lietze VU; Peterson BF; Scharf ME; Boucias DG PLoS One; 2015; 10(4):e0123391. PubMed ID: 25837376 [TBL] [Abstract][Full Text] [Related]
20. Interaction between the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae in foraging arenas. Chouvenc T; Su NY; Elliott ML J Econ Entomol; 2008 Jun; 101(3):885-93. PubMed ID: 18613591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]