These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24048267)

  • 21. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets.
    Kraemer BF; Campbell RA; Schwertz H; Franks ZG; Vieira de Abreu A; Grundler K; Kile BT; Dhakal BK; Rondina MT; Kahr WH; Mulvey MA; Blaylock RC; Zimmerman GA; Weyrich AS
    Blood; 2012 Dec; 120(25):5014-20. PubMed ID: 23086749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Calpain-Activated Protein Functions.
    Del Carmen Lafita-Navarro M; Conacci-Sorrell M
    Methods Mol Biol; 2019; 1915():149-160. PubMed ID: 30617802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of autophagy causes tau proteolysis by activating calpain in rat brain.
    Zhang JY; Peng C; Shi H; Wang S; Wang Q; Wang JZ
    J Alzheimers Dis; 2009; 16(1):39-47. PubMed ID: 19158420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calpain-mediated regulation of platelet signaling pathways.
    Kuchay SM; Chishti AH
    Curr Opin Hematol; 2007 May; 14(3):249-54. PubMed ID: 17414215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SNARE protein degradation upon platelet activation: calpain cleaves SNAP-23.
    Lai KC; Flaumenhaft R
    J Cell Physiol; 2003 Feb; 194(2):206-14. PubMed ID: 12494459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of Both the Calpain and Ubiquitin-Proteasome Systems Contributes to Septic Cardiomyopathy through Dystrophin Loss/Disruption and mTOR Inhibition.
    Freitas AC; Figueiredo MJ; Campos EC; Soave DF; Ramos SG; Tanowitz HB; Celes MR
    PLoS One; 2016; 11(11):e0166839. PubMed ID: 27880847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The roles of the proteasome pathway in signal transduction and neurodegenerative diseases.
    Chen JJ; Lin F; Qin ZH
    Neurosci Bull; 2008 Jun; 24(3):183-94. PubMed ID: 18500392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of 26S proteasome-dependent proteolysis in the formation and restructuring of microtubule networks.
    Kurepa J; Wang S; Smalle J
    Plant Signal Behav; 2012 Oct; 7(10):1289-95. PubMed ID: 22902696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Molecular mechanisms and functions of autophagy and the ubiquitin-proteasome pathway].
    Chen K; Cheng HH; Zhou RJ
    Yi Chuan; 2012 Jan; 34(1):5-18. PubMed ID: 22306868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative challenge enhances REGγ-proteasome-dependent protein degradation.
    Zhang Y; Liu S; Zuo Q; Wu L; Ji L; Zhai W; Xiao J; Chen J; Li X
    Free Radic Biol Med; 2015 May; 82():42-9. PubMed ID: 25656993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ubiquitin-specific protease 14 is a new therapeutic target for the treatment of diseases.
    Wang D; Ma H; Zhao Y; Zhao J
    J Cell Physiol; 2021 May; 236(5):3396-3405. PubMed ID: 33135160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible role of calpain in normal processing of beta-amyloid precursor protein in human platelets.
    Chen M; Durr J; Fernandez HL
    Biochem Biophys Res Commun; 2000 Jun; 273(1):170-5. PubMed ID: 10873581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region.
    Yu H; Kago G; Yellman CM; Matouschek A
    EMBO J; 2016 Jul; 35(14):1522-36. PubMed ID: 27234297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets.
    Denis MM; Tolley ND; Bunting M; Schwertz H; Jiang H; Lindemann S; Yost CC; Rubner FJ; Albertine KH; Swoboda KJ; Fratto CM; Tolley E; Kraiss LW; McIntyre TM; Zimmerman GA; Weyrich AS
    Cell; 2005 Aug; 122(3):379-91. PubMed ID: 16096058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of methoxysuccinyl-phe-leu-phe-7-amido-4-trifluoromethyl coumarin (FLF) in cultured myotubes and HepG2 cells is proteasome- and calpain/calcium-dependent.
    Li BG; Fang CH; Hasselgren P
    Int J Biochem Cell Biol; 2000 Jun; 32(6):677-86. PubMed ID: 10785364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing protein synthesis by platelets.
    Schwertz H; Rowley JW; Tolley ND; Campbell RA; Weyrich AS
    Methods Mol Biol; 2012; 788():141-53. PubMed ID: 22130706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial Proteasomes: Mechanistic and Functional Insights.
    Becker SH; Darwin KH
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 27974513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The proteasome and the degradation of oxidized proteins: Part II - protein oxidation and proteasomal degradation.
    Jung T; Höhn A; Grune T
    Redox Biol; 2014; 2():99-104. PubMed ID: 25460724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L.).
    Lysenko LA; Kantserova NP; Kaivarainen EI; Krupnova MY; Nemova NN
    Comp Biochem Physiol B Biochem Mol Biol; 2017 Sep; 211():22-28. PubMed ID: 28499850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural disorder and its role in proteasomal degradation.
    Aufderheide A; Unverdorben P; Baumeister W; Förster F
    FEBS Lett; 2015 Sep; 589(19 Pt A):2552-60. PubMed ID: 26226424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.