These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 24048358)
1. CLIPS-4D: a classifier that distinguishes structurally and functionally important residue-positions based on sequence and 3D data. Janda JO; Meier A; Merkl R Bioinformatics; 2013 Dec; 29(23):3029-35. PubMed ID: 24048358 [TBL] [Abstract][Full Text] [Related]
2. CLIPS-1D: analysis of multiple sequence alignments to deduce for residue-positions a role in catalysis, ligand-binding, or protein structure. Janda JO; Busch M; Kück F; Porfenenko M; Merkl R BMC Bioinformatics; 2012 Apr; 13():55. PubMed ID: 22480135 [TBL] [Abstract][Full Text] [Related]
3. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Jones DT; Singh T; Kosciolek T; Tetchner S Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331 [TBL] [Abstract][Full Text] [Related]
4. Prodepth: predict residue depth by support vector regression approach from protein sequences only. Song J; Tan H; Mahmood K; Law RH; Buckle AM; Webb GI; Akutsu T; Whisstock JC PLoS One; 2009 Sep; 4(9):e7072. PubMed ID: 19759917 [TBL] [Abstract][Full Text] [Related]
5. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information. Liu R; Hu J BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668 [TBL] [Abstract][Full Text] [Related]
6. Reproducing the manual annotation of multiple sequence alignments using a SVM classifier. Blouin C; Perry S; Lavell A; Susko E; Roger AJ Bioinformatics; 2009 Dec; 25(23):3093-8. PubMed ID: 19770262 [TBL] [Abstract][Full Text] [Related]
7. Accurate sequence-based prediction of catalytic residues. Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875 [TBL] [Abstract][Full Text] [Related]
8. Predicting DNA-binding sites of proteins from amino acid sequence. Yan C; Terribilini M; Wu F; Jernigan RL; Dobbs D; Honavar V BMC Bioinformatics; 2006 May; 7():262. PubMed ID: 16712732 [TBL] [Abstract][Full Text] [Related]
9. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios. Pei J; Cai W; Kinch LN; Grishin NV Bioinformatics; 2006 Jan; 22(2):164-71. PubMed ID: 16278237 [TBL] [Abstract][Full Text] [Related]
10. Adaptive Smith-Waterman residue match seeding for protein structural alignment. Topham CM; Rouquier M; Tarrat N; André I Proteins; 2013 Oct; 81(10):1823-39. PubMed ID: 23720362 [TBL] [Abstract][Full Text] [Related]
11. PROMALS web server for accurate multiple protein sequence alignments. Pei J; Kim BH; Tang M; Grishin NV Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W649-52. PubMed ID: 17452345 [TBL] [Abstract][Full Text] [Related]
12. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin. Zhou CL; Zemla AT; Roe D; Young M; Lam M; Schoeniger JS; Balhorn R Bioinformatics; 2005 Jul; 21(14):3089-96. PubMed ID: 15905278 [TBL] [Abstract][Full Text] [Related]
13. PROFcon: novel prediction of long-range contacts. Punta M; Rost B Bioinformatics; 2005 Jul; 21(13):2960-8. PubMed ID: 15890748 [TBL] [Abstract][Full Text] [Related]
14. Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile. Faraggi E; Kouza M; Zhou Y; Kloczkowski A Methods Mol Biol; 2017; 1484():127-136. PubMed ID: 27787824 [TBL] [Abstract][Full Text] [Related]
16. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences. Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483 [TBL] [Abstract][Full Text] [Related]
17. PAR-3D: a server to predict protein active site residues. Goyal K; Mohanty D; Mande SC Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W503-5. PubMed ID: 17478506 [TBL] [Abstract][Full Text] [Related]
18. Predicting ligand binding residues and functional sites using multipositional correlations with graph theoretic clustering and kernel CCA. González AJ; Liao L; Wu CH IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):992-1001. PubMed ID: 22025754 [TBL] [Abstract][Full Text] [Related]
19. DBAli tools: mining the protein structure space. Marti-Renom MA; Pieper U; Madhusudhan MS; Rossi A; Eswar N; Davis FP; Al-Shahrour F; Dopazo J; Sali A Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W393-7. PubMed ID: 17478513 [TBL] [Abstract][Full Text] [Related]
20. PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Chen K; Kurgan L Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]