These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24048767)
1. Kinetics of acrylodan-labelled cAMP-dependent protein kinase catalytic subunit denaturation. Kivi R; Loog M; Jemth P; Järv J Protein J; 2013 Oct; 32(7):519-25. PubMed ID: 24048767 [TBL] [Abstract][Full Text] [Related]
2. Computational modeling of acrylodan-labeled cAMP dependent protein kinase catalytic subunit unfolding. Kuznetsov A; Kivi R; Järv J Comput Biol Chem; 2016 Apr; 61():197-201. PubMed ID: 26896699 [TBL] [Abstract][Full Text] [Related]
3. Different States of Acrylodan-Labeled 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits in Denaturant Solutions. Kivi R; Järv J Protein J; 2016 Oct; 35(5):331-339. PubMed ID: 27601174 [TBL] [Abstract][Full Text] [Related]
4. Allosteric Effect of Adenosine Triphosphate on Peptide Recognition by 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits. Kivi R; Solovjova K; Haljasorg T; Arukuusk P; Järv J Protein J; 2016 Dec; 35(6):459-466. PubMed ID: 27848106 [TBL] [Abstract][Full Text] [Related]
5. Synergistic binding of nucleotides and inhibitors to cAMP-dependent protein kinase examined by acrylodan fluorescence spectroscopy. Lew J; Coruh N; Tsigelny I; Garrod S; Taylor SS J Biol Chem; 1997 Jan; 272(3):1507-13. PubMed ID: 8999821 [TBL] [Abstract][Full Text] [Related]
6. High affinity binding of the heat-stable protein kinase inhibitor to the catalytic subunit of cAMP-dependent protein kinase is selectively abolished by mutation of Arg133. Wen W; Taylor SS J Biol Chem; 1994 Mar; 269(11):8423-30. PubMed ID: 8132568 [TBL] [Abstract][Full Text] [Related]
7. Computer modeling of the dynamic properties of the cAMP-dependent protein kinase catalytic subunit. Izvolski A; Järv J; Kuznetsov A Comput Biol Chem; 2013 Dec; 47():66-70. PubMed ID: 23938955 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic aspects of cAMP dependent protein kinase catalytic subunit allostery. Kivi R; Jemth P; Järv J Protein J; 2014 Aug; 33(4):386-93. PubMed ID: 24985055 [TBL] [Abstract][Full Text] [Related]
9. Global consequences of activation loop phosphorylation on protein kinase A. Steichen JM; Iyer GH; Li S; Saldanha SA; Deal MS; Woods VL; Taylor SS J Biol Chem; 2010 Feb; 285(6):3825-3832. PubMed ID: 19965870 [TBL] [Abstract][Full Text] [Related]
10. Cyclic-AMP and pseudosubstrate effects on type-I A-kinase regulatory and catalytic subunit binding kinetics. Anand G; Taylor SS; Johnson DA Biochemistry; 2007 Aug; 46(32):9283-91. PubMed ID: 17658893 [TBL] [Abstract][Full Text] [Related]
11. The catalytic subunit of Dictyostelium cAMP-dependent protein kinase -- role of the N-terminal domain and of the C-terminal residues in catalytic activity and stability. Etchebehere LC; Van Bemmelen MX; Anjard C; Traincard F; Assemat K; Reymond C; Véron M Eur J Biochem; 1997 Sep; 248(3):820-6. PubMed ID: 9342234 [TBL] [Abstract][Full Text] [Related]
12. Arginine 210 is not a critical residue for the allosteric interactions mediated by binding of cyclic AMP to site A of regulatory (RIalpha) subunit of cyclic AMP-dependent protein kinase. Steinberg RA; Symcox MM; Sollid S; Ogreid D J Biol Chem; 1996 Nov; 271(44):27630-6. PubMed ID: 8910352 [TBL] [Abstract][Full Text] [Related]
13. Allosteric network of cAMP-dependent protein kinase revealed by mutation of Tyr204 in the P+1 loop. Yang J; Garrod SM; Deal MS; Anand GS; Woods VL; Taylor S J Mol Biol; 2005 Feb; 346(1):191-201. PubMed ID: 15663937 [TBL] [Abstract][Full Text] [Related]
14. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin. Wang R; Sun S; Bekos EJ; Bright FV Anal Chem; 1995 Jan; 67(1):149-59. PubMed ID: 7864387 [TBL] [Abstract][Full Text] [Related]
15. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Flora K; Brennan JD; Baker GA; Doody MA; Bright FV Biophys J; 1998 Aug; 75(2):1084-96. PubMed ID: 9675210 [TBL] [Abstract][Full Text] [Related]
16. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy. Lew J; Taylor SS; Adams JA Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of activation of cAMP-dependent protein kinase: in Mucor rouxii the apparent specific activity of the cAMP-activated holoenzyme is different than that of its free catalytic subunit. Zaremberg V; Donella-Deana A; Moreno S Arch Biochem Biophys; 2000 Sep; 381(1):74-82. PubMed ID: 11019822 [TBL] [Abstract][Full Text] [Related]
18. Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS). Hamuro Y; Anand GS; Kim JS; Juliano C; Stranz DD; Taylor SS; Woods VL J Mol Biol; 2004 Jul; 340(5):1185-96. PubMed ID: 15236976 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine. Narayana N; Cox S; Shaltiel S; Taylor SS; Xuong N Biochemistry; 1997 Apr; 36(15):4438-48. PubMed ID: 9109651 [TBL] [Abstract][Full Text] [Related]
20. Acrylodan-conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine-binding protein. Hibbs RE; Talley TT; Taylor P J Biol Chem; 2004 Jul; 279(27):28483-91. PubMed ID: 15117947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]