BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24048851)

  • 1. The role of GluA1 in ocular dominance plasticity in the mouse visual cortex.
    Ranson A; Sengpiel F; Fox K
    J Neurosci; 2013 Sep; 33(38):15220-5. PubMed ID: 24048851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity.
    Ranson A; Cheetham CE; Fox K; Sengpiel F
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1311-6. PubMed ID: 22232689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STAT1 regulates the homeostatic component of visual cortical plasticity via an AMPA receptor-mediated mechanism.
    Nagakura I; Van Wart A; Petravicz J; Tropea D; Sur M
    J Neurosci; 2014 Jul; 34(31):10256-63. PubMed ID: 25080587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex.
    He HY; Hodos W; Quinlan EM
    J Neurosci; 2006 Mar; 26(11):2951-5. PubMed ID: 16540572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex.
    Khibnik LA; Cho KK; Bear MF
    Neuron; 2010 May; 66(4):493-500. PubMed ID: 20510854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Major Vault Protein, a Candidate Gene in 16p11.2 Microdeletion Syndrome, Is Required for the Homeostatic Regulation of Visual Cortical Plasticity.
    Ip JPK; Nagakura I; Petravicz J; Li K; Wiemer EAC; Sur M
    J Neurosci; 2018 Apr; 38(16):3890-3900. PubMed ID: 29540554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporally coherent visual stimuli boost ocular dominance plasticity.
    Matthies U; Balog J; Lehmann K
    J Neurosci; 2013 Jul; 33(29):11774-8. PubMed ID: 23864666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-modal restoration of ocular dominance plasticity in adult mice.
    Teichert M; Isstas M; Zhang Y; Bolz J
    Eur J Neurosci; 2018 Jun; 47(11):1375-1384. PubMed ID: 29761580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple periods of functional ocular dominance plasticity in mouse visual cortex.
    Tagawa Y; Kanold PO; Majdan M; Shatz CJ
    Nat Neurosci; 2005 Mar; 8(3):380-8. PubMed ID: 15723060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity.
    Fong MF; Finnie PS; Kim T; Thomazeau A; Kaplan ES; Cooke SF; Bear MF
    Cereb Cortex; 2020 Apr; 30(4):2555-2572. PubMed ID: 31832634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.
    Chen XJ; Rasch MJ; Chen G; Ye CQ; Wu S; Zhang XH
    J Neurosci; 2014 Feb; 34(8):2940-55. PubMed ID: 24553935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experience-enabled enhancement of adult visual cortex function.
    Tschetter WW; Alam NM; Yee CW; Gorz M; Douglas RM; Sagdullaev B; Prusky GT
    J Neurosci; 2013 Mar; 33(12):5362-6. PubMed ID: 23516301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homer1a Is Required for Establishment of Contralateral Bias and Maintenance of Ocular Dominance in Mouse Visual Cortex.
    Chokshi V; Druciak B; Worley PF; Lee HK
    J Neurosci; 2019 May; 39(20):3897-3905. PubMed ID: 30867257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity.
    Harauzov A; Spolidoro M; DiCristo G; De Pasquale R; Cancedda L; Pizzorusso T; Viegi A; Berardi N; Maffei L
    J Neurosci; 2010 Jan; 30(1):361-71. PubMed ID: 20053917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cortical Mechanisms Underlying Ocular Dominance Plasticity in Adults are Not Orientationally Selective.
    Wang Y; Yao Z; He Z; Zhou J; Hess RF
    Neuroscience; 2017 Dec; 367():121-126. PubMed ID: 29111362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.