These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 240496)

  • 1. Biochemical changes during sporulation of Bacillus stearothermophilus.
    Orlowski M
    Can J Microbiol; 1975 Aug; 21(8):1144-50. PubMed ID: 240496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle.
    Nickerson KW; De Pinto J; Bulla LA
    J Bacteriol; 1974 Jan; 117(1):321-3. PubMed ID: 4587611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pH on sporulation of Bacillus stearothermophilus.
    Yazdany S; Lashkari KB
    Appl Microbiol; 1975 Jul; 30(1):1-3. PubMed ID: 238470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BIOCHEMICAL CHANGES OCCURRING DURING SPORULATION OF BACILLUS CEREUS T. II. EFFECT OF ESTERS OF ORGANIC ACIDS ON SPORULATION.
    GOLLAKOTA KG; HALVORSON HO
    J Bacteriol; 1963 Jun; 85(6):1386-93. PubMed ID: 14047234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylamide gel electrophoresis of intracellular proteins during early stages of sporulation in Bacillus subtilis.
    Bott KF
    J Bacteriol; 1971 Nov; 108(2):720-32. PubMed ID: 4399643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derepression of sporulation and synthesis of mycobacillin and dipicolinic acid by guanosine 3':5'-cyclic monophosphate under conditions of glucose repression in Bacillus subtilis.
    Majumdar S; Bose SK
    J Gen Microbiol; 1985 Oct; 131(10):2783-8. PubMed ID: 2999297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells.
    HANSON RS; SRINIVASAN VR; HALVORSON HO
    J Bacteriol; 1963 Feb; 85(2):451-60. PubMed ID: 13952646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. I. CORRELATION OF MORPHOLOGICAL CHANGES WITH CATABOLIC ACTIVITIES, SYNTHESIS OF DIPICOLINIC ACID, AND DEVELOPMENT OF HEAT RESISTANCE.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):690-4. PubMed ID: 14208508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Germination of spores of Bacillus stearothermophilus induced by analogues of dipicolinate di-anion.
    Lewis JC; Colman R
    J Bacteriol; 1974 Mar; 117(3):1350-3. PubMed ID: 4591954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.
    Mtimet N; Trunet C; Mathot AG; Venaille L; Leguérinel I; Coroller L; Couvert O
    Food Microbiol; 2015 Jun; 48():153-62. PubMed ID: 25791003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The release of dipicolinic acid during heating and its relation to the heat destruction of Bacillus stearothermophilus spores.
    Mallidis CG; Scholefield JS
    J Appl Bacteriol; 1985 Nov; 59(5):479-86. PubMed ID: 4086410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of purine nucleoside phosphorylase occurrence in sporulation of Bacillus cereus.
    Englebrecht HL
    J Bacteriol; 1972 Jul; 111(1):33-6. PubMed ID: 4204910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between sporulation and synthesis of mycobacillin and dipicolinic acid under condition of catabolite repression in Bacillus subtilis.
    Majumdar S; Basu S; Das SK; Bose SK
    Folia Microbiol (Praha); 1986; 31(3):196-202. PubMed ID: 3093340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of media on spore yield and thermal resistance of Bacillus stearothermophilus.
    Penna TC; Machoshvili IA; Ishii M
    Appl Biochem Biotechnol; 2003; 105 -108():287-94. PubMed ID: 12721452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation.
    Sadykov MR; Ahn JS; Widhelm TJ; Eckrich VM; Endres JL; Driks A; Rutkowski GE; Wingerd KL; Bayles KW
    Mol Microbiol; 2017 Jun; 104(5):793-803. PubMed ID: 28299860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of the synthesis of isocitrate lyase in a thermophilic bacillus.
    Griffiths MW
    J Gen Microbiol; 1979 Jun; 112(2):357-64. PubMed ID: 479837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical model for the combined effect of temperature and pH on the thermal resistance of Bacillus stearothermophilus and Clostridium sporogenes spores.
    Fernández PS; Ocio MJ; Rodrigo F; Rodrigo M; Martínez A
    Int J Food Microbiol; 1996 Sep; 32(1-2):225-33. PubMed ID: 8880342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of dihydrodipicolinate synthase during growth and sporulation of Bacillus cereus.
    Hoganson DA; Stahly DP
    J Bacteriol; 1975 Dec; 124(3):1344-50. PubMed ID: 367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of dipicolinic acid and calcium and activation of Bacillus stearothermophilus spores as a function of time, temperature and pH.
    Brown MR; Melling J
    J Pharm Pharmacol; 1973 Jun; 25(6):478-83. PubMed ID: 4146587
    [No Abstract]   [Full Text] [Related]  

  • 20. EFFECT OF PH ON INTERMEDIATES PRODUCED DURING GROWTH AND SPORULATION OF BACILLUS CEREUS.
    NAKATA HM
    J Bacteriol; 1963 Sep; 86(3):577-81. PubMed ID: 14066440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.