These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24049685)

  • 1. Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy.
    Hu Y; Cheng X; Daniel Ou-Yang H
    Biomed Opt Express; 2013; 4(9):1646-53. PubMed ID: 24049685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-photon excited photoluminescence of gold nanospheres and its application in prostate specific antigen detection via fluorescence correlation spectroscopy (FCS).
    Craciun AM; Suarasan S; Focsan M; Astilean S
    Talanta; 2021 Jun; 228():122242. PubMed ID: 33773714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection.
    Hosokawa C; Yoshikawa H; Masuhara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061410. PubMed ID: 15697365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping and manipulation for single-particle spectroscopy and microscopy.
    Chen Z; Cai Z; Liu W; Yan Z
    J Chem Phys; 2022 Aug; 157(5):050901. PubMed ID: 35933217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence correlation spectroscopy analysis of diffusion in a laser gradient field: a numerical approach.
    Meng F; Ma H
    J Phys Chem B; 2005 Mar; 109(12):5580-5. PubMed ID: 16851600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential energy profile of colloidal nanoparticles in optical confinement.
    Fu J; Zhan Q; Lim MY; Li Z; Ou-Yang HD
    Opt Lett; 2013 Oct; 38(20):3995-8. PubMed ID: 24321903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.
    Liu F; Dong C; Ren J
    Nanoscale; 2018 Mar; 10(11):5309-5317. PubMed ID: 29503992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Light-Scattering Correlation Spectroscopy and Its Application in Analytical Chemistry for Life Science.
    Dong C; Ren J
    Acc Chem Res; 2023 Oct; 56(19):2582-2594. PubMed ID: 37706459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface.
    Wang SF; Kudo T; Yuyama KI; Sugiyama T; Masuhara H
    Langmuir; 2016 Nov; 32(47):12488-12496. PubMed ID: 27606971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined acoustic and optical trapping.
    Thalhammer G; Steiger R; Meinschad M; Hill M; Bernet S; Ritsch-Marte M
    Biomed Opt Express; 2011 Oct; 2(10):2859-70. PubMed ID: 22025990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy.
    Andres-Arroyo A; Wang F; Toe WJ; Reece P
    Biomed Opt Express; 2015 Sep; 6(9):3646-54. PubMed ID: 26417530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized optical trapping of gold nanoparticles.
    Hajizadeh F; Reihani SN
    Opt Express; 2010 Jan; 18(2):551-9. PubMed ID: 20173874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Dimensions of Core-Shell Nanoparticles Comparable to the Confocal Volume Studied by Means of Fluorescence Correlation Spectroscopy.
    Gapinski J; Jarzębski M; Buitenhuis J; Deptula T; Mazuryk J; Patkowski A
    Langmuir; 2016 Mar; 32(10):2482-91. PubMed ID: 26894549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy.
    Doose S; Tsay JM; Pinaud F; Weiss S
    Anal Chem; 2005 Apr; 77(7):2235-42. PubMed ID: 15801758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous Diffusion Inside Soft Colloidal Suspensions Investigated by Variable Length Scale Fluorescence Correlation Spectroscopy.
    Li H; Zheng K; Yang J; Zhao J
    ACS Omega; 2020 May; 5(19):11123-11130. PubMed ID: 32455234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incoherent Optical Tweezers on Black Titanium.
    Hashimoto S; Uenobo Y; Takao R; Yuyama KI; Shoji T; Linklater DP; Ivanova E; Juodkazis S; Kameyama T; Torimoto T; Tsuboi Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27586-27593. PubMed ID: 34085525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.