These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24049767)

  • 1. Fluorescent silica nanoparticle-based probe for the detection of ozone via fluorescence resonance energy transfer.
    Qi W; Wu D; Zhao J; Liu Z; Xu M; Anjum S; Xu G
    Analyst; 2013 Nov; 138(21):6305-8. PubMed ID: 24049767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemiluminescence resonance energy transfer based on Ru(phen)3(2+)-doped silica nanoparticles and its application in "turn-on" detection of ozone.
    Qi W; Wu D; Zhao J; Liu Z; Zhang W; Zhang L; Xu G
    Anal Chem; 2013 Mar; 85(6):3207-12. PubMed ID: 23414582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer mediated large Stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging.
    He X; Wang Y; Wang K; Chen M; Chen S
    Anal Chem; 2012 Nov; 84(21):9056-64. PubMed ID: 23017033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the activity of matrix metalloproteinase II with a sequentially click-labeled silica nanoparticle FRET probe.
    Achatz DE; Mezo G; Kele P; Wolfbeis OS
    Chembiochem; 2009 Sep; 10(14):2316-20. PubMed ID: 19637149
    [No Abstract]   [Full Text] [Related]  

  • 5. Multicolor dye-doped silica nanoparticles independent of FRET.
    Xu J; Liang J; Li J; Yang W
    Langmuir; 2010 Oct; 26(20):15722-5. PubMed ID: 20843056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel multicolor fluorescently labeled silica nanoparticles for interface fluorescence resonance energy transfer to and from labeled avidin.
    Saleh SM; Müller R; Mader HS; Duerkop A; Wolfbeis OS
    Anal Bioanal Chem; 2010 Oct; 398(4):1615-23. PubMed ID: 20446080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles.
    Gao F; Cui P; Chen X; Ye Q; Li M; Wang L
    Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reversible dual-response fluorescence switch for the detection of multiple analytes.
    Geng J; Liu P; Liu B; Guan G; Zhang Z; Han MY
    Chemistry; 2010 Mar; 16(12):3720-7. PubMed ID: 20151433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn(2+) using a dual-emission silica-coated quantum dots mixture.
    Wu L; Guo QS; Liu YQ; Sun QJ
    Anal Chem; 2015 May; 87(10):5318-23. PubMed ID: 25932651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of photoswitchable fluorescent SiO2 nanoparticles.
    May F; Peter M; Hütten A; Prodi L; Mattay J
    Chemistry; 2012 Jan; 18(3):814-21. PubMed ID: 22213584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles.
    Qiang W; Liu H; Li W; Chen X; Xu D
    Anal Chim Acta; 2014 May; 828():92-8. PubMed ID: 24845820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer (FRET)-based nanoarchitecture for monitoring deubiquitinating enzyme activity.
    Liang YY; Zhang J; Cui H; Shao ZS; Cheng C; Wang YB; Wang HS
    Chem Commun (Camb); 2020 Mar; 56(21):3183-3186. PubMed ID: 32067022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+.
    Zong C; Ai K; Zhang G; Li H; Lu L
    Anal Chem; 2011 Apr; 83(8):3126-32. PubMed ID: 21425862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite.
    Chen G; Song F; Wang J; Yang Z; Sun S; Fan J; Qiang X; Wang X; Dou B; Peng X
    Chem Commun (Camb); 2012 Mar; 48(24):2949-51. PubMed ID: 22237551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRET-based fluorescent nanoprobe platform for sorting of active microorganisms by functional properties.
    Luo Y; Liu F; Li E; Fang Y; Zhao G; Dai X; Li J; Wang B; Xu M; Liao B; Sun G
    Biosens Bioelectron; 2020 Jan; 148():111832. PubMed ID: 31706173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes.
    Genovese D; Rampazzo E; Bonacchi S; Montalti M; Zaccheroni N; Prodi L
    Nanoscale; 2014 Mar; 6(6):3022-36. PubMed ID: 24531884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications.
    Gong YJ; Zhang XB; Zhang CC; Luo AL; Fu T; Tan W; Shen GL; Yu RQ
    Anal Chem; 2012 Dec; 84(24):10777-84. PubMed ID: 23171399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds.
    Ma C; Zeng F; Huang L; Wu S
    J Phys Chem B; 2011 Feb; 115(5):874-82. PubMed ID: 21250732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upconversion nanoparticle-based FRET system for study of siRNA in live cells.
    Jiang S; Zhang Y
    Langmuir; 2010 May; 26(9):6689-94. PubMed ID: 20073488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.