BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24050135)

  • 1. Very large virtual compound spaces: construction, storage and utility in drug discovery.
    Peng Z
    Drug Discov Today Technol; 2013 Sep; 10(3):e387-94. PubMed ID: 24050135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.
    Hu Q; Peng Z; Kostrowicki J; Kuki A
    Methods Mol Biol; 2011; 685():253-76. PubMed ID: 20981528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces.
    Boehm M; Wu TY; Claussen H; Lemmen C
    J Med Chem; 2008 Apr; 51(8):2468-80. PubMed ID: 18380426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with Forecaster, a novel platform for drug discovery.
    Therrien E; Englebienne P; Arrowsmith AG; Mendoza-Sanchez R; Corbeil CR; Weill N; Campagna-Slater V; Moitessier N
    J Chem Inf Model; 2012 Jan; 52(1):210-24. PubMed ID: 22133077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Searching Fragment Spaces with feature trees.
    Lessel U; Wellenzohn B; Lilienthal M; Claussen H
    J Chem Inf Model; 2009 Feb; 49(2):270-9. PubMed ID: 19434829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive combinatorial design of focused compound libraries.
    Schneider G; Schüller A
    Methods Mol Biol; 2009; 572():135-47. PubMed ID: 20694689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery.
    Reutlinger M; Schneider G
    J Mol Graph Model; 2012 Apr; 34():108-17. PubMed ID: 22326864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIN-a combinatorial compound collection of synthetically feasible multicomponent synthesis products.
    Dorschner KV; Toomey D; Brennan MP; Heinemann T; Duffy FJ; Nolan KB; Cox D; Adamo MF; Chubb AJ
    J Chem Inf Model; 2011 May; 51(5):986-95. PubMed ID: 21495663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PGVL Hub: An integrated desktop tool for medicinal chemists to streamline design and synthesis of chemical libraries and singleton compounds.
    Peng Z; Yang B; Mattaparti S; Shulok T; Thacher T; Kong J; Kostrowicki J; Hu Q; Na J; Zhou JZ; Klatte D; Chao B; Ito S; Clark J; Sciammetta N; Coner B; Waller C; Kuki A
    Methods Mol Biol; 2011; 685():295-320. PubMed ID: 20981530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient exploration of large combinatorial chemistry spaces by monomer-based similarity searching.
    Yu N; Bakken GA
    J Chem Inf Model; 2009 Apr; 49(4):745-55. PubMed ID: 19309177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FilTer BaSe: A web accessible chemical database for small compound libraries.
    Kolte BS; Londhe SR; Solanki BR; Gacche RN; Meshram RJ
    J Mol Graph Model; 2018 Mar; 80():95-103. PubMed ID: 29328995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated recycling of chemistry for virtual screening and library design.
    Vainio MJ; Kogej T; Raubacher F
    J Chem Inf Model; 2012 Jul; 52(7):1777-86. PubMed ID: 22657574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular library design using multi-objective optimization methods.
    Nicolaou CA; Kannas CC
    Methods Mol Biol; 2011; 685():53-69. PubMed ID: 20981518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of focused and restrained subsets from extremely large virtual libraries.
    Jamois EA; Lin CT; Waldman M
    J Mol Graph Model; 2003 Nov; 22(2):141-9. PubMed ID: 12932785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of combinatorial libraries for the exploration of virtual hits from fragment space searches with LoFT.
    Lessel U; Wellenzohn B; Fischer JR; Rarey M
    J Chem Inf Model; 2012 Feb; 52(2):373-9. PubMed ID: 22148673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum Common Substructure Searching in Combinatorial Make-on-Demand Compound Spaces.
    Schmidt R; Klein R; Rarey M
    J Chem Inf Model; 2022 May; 62(9):2133-2150. PubMed ID: 34478299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A scalable approach to combinatorial library design.
    Sharma P; Salapaka S; Beck C
    Methods Mol Biol; 2011; 685():71-89. PubMed ID: 20981519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.