These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24050221)

  • 1. Self-tensioning aquatic caddisfly silk: Ca2+-dependent structure, strength, and load cycle hysteresis.
    Ashton NN; Roe DR; Weiss RB; Cheatham TE; Stewart RJ
    Biomacromolecules; 2013 Oct; 14(10):3668-81. PubMed ID: 24050221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines.
    Stewart RJ; Wang CS
    Biomacromolecules; 2010 Apr; 11(4):969-74. PubMed ID: 20196534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquatic caddisworm silk is solidified by environmental metal ions during the natural fiber-spinning process.
    Ashton NN; Stewart RJ
    FASEB J; 2019 Jan; 33(1):572-583. PubMed ID: 29985645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connecting caddisworm silk structure and mechanical properties: combined infrared spectroscopy and mechanical analysis.
    Ashton NN; Pan H; Stewart RJ
    Open Biol; 2016 Jun; 6(6):. PubMed ID: 27278649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-recovering caddisfly silk: energy dissipating, Ca(2+)-dependent, double dynamic network fibers.
    Ashton NN; Stewart RJ
    Soft Matter; 2015 Mar; 11(9):1667-76. PubMed ID: 25525713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Sheet nanocrystalline domains formed from phosphorylated serine-rich motifs in caddisfly larval silk: a solid state NMR and XRD study.
    Addison JB; Ashton NN; Weber WS; Stewart RJ; Holland GP; Yarger JL
    Biomacromolecules; 2013 Apr; 14(4):1140-8. PubMed ID: 23452243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical properties and structure of aquatic silk fiber from Stenopsyche marmorata.
    Tsukada M; Khan MM; Inoue E; Kimura G; Hun JY; Mishima M; Hirabayashi K
    Int J Biol Macromol; 2010 Jan; 46(1):54-8. PubMed ID: 19828120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein composition of silk filaments spun under water by caddisfly larvae.
    Yonemura N; Sehnal F; Mita K; Tamura T
    Biomacromolecules; 2006 Dec; 7(12):3370-8. PubMed ID: 17154465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata.
    Bai X; Sakaguchi M; Yamaguchi Y; Ishihara S; Tsukada M; Hirabayashi K; Ohkawa K; Nomura T; Arai R
    Biochem Biophys Res Commun; 2015 Aug; 464(3):814-9. PubMed ID: 26168724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wet-spinning of recombinant silk-elastin-like protein polymer fibers with high tensile strength and high deformability.
    Qiu W; Teng W; Cappello J; Wu X
    Biomacromolecules; 2009 Mar; 10(3):602-8. PubMed ID: 19186950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the underwater silken architectures of caddisworms: comparative silkomics across two caddisfly suborders.
    Frandsen PB; Bursell MG; Taylor AM; Wilson SB; Steeneck A; Stewart RJ
    Philos Trans R Soc Lond B Biol Sci; 2019 Oct; 374(1784):20190206. PubMed ID: 31495307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis.
    Wang CS; Ashton NN; Weiss RB; Stewart RJ
    Insect Biochem Mol Biol; 2014 Nov; 54():69-79. PubMed ID: 25220661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR.
    Zhou P; Xie X; Knight DP; Zong XH; Deng F; Yao WH
    Biochemistry; 2004 Sep; 43(35):11302-11. PubMed ID: 15366940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible assembly of β-sheet nanocrystals within caddisfly silk.
    Addison JB; Weber WS; Mou Q; Ashton NN; Stewart RJ; Holland GP; Yarger JL
    Biomacromolecules; 2014 Apr; 15(4):1269-75. PubMed ID: 24576204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Mechanical Properties and Structure Transition of Antheraea pernyi Silk Fiber Induced by Its Contraction.
    Wang Y; Wen J; Peng B; Hu B; Chen X; Shao Z
    Biomacromolecules; 2018 Jun; 19(6):1999-2006. PubMed ID: 29401377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks.
    Xiao S; Xiao S; Gräter F
    Phys Chem Chem Phys; 2013 Jun; 15(22):8765-71. PubMed ID: 23633029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
    Bratzel G; Buehler MJ
    J Mech Behav Biomed Mater; 2012 Mar; 7():30-40. PubMed ID: 22340682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk tape nanostructure and silk gland anatomy of trichoptera.
    Ashton NN; Taggart DS; Stewart RJ
    Biopolymers; 2012 Jun; 97(6):432-45. PubMed ID: 21953029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters.
    Yan J; Zhou G; Knight DP; Shao Z; Chen X
    Biomacromolecules; 2010 Jan; 11(1):1-5. PubMed ID: 19860400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.