These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 24050228)
21. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. Seel CJ; Gulder T Chembiochem; 2019 Aug; 20(15):1871-1897. PubMed ID: 30864191 [TBL] [Abstract][Full Text] [Related]
22. Discovery and utilization of biocatalysts for chiral synthesis: an overview of Chinese scientists' research and development. Yu HL; Xu JH; Lu WY; Lin GQ Adv Biochem Eng Biotechnol; 2009; 113():1-31. PubMed ID: 19623477 [TBL] [Abstract][Full Text] [Related]
23. Dehydrogenases and transaminases in asymmetric synthesis. Stewart JD Curr Opin Chem Biol; 2001 Apr; 5(2):120-9. PubMed ID: 11282337 [TBL] [Abstract][Full Text] [Related]
24. Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Busto E; Gotor-Fernández V; Gotor V Chem Soc Rev; 2010 Nov; 39(11):4504-23. PubMed ID: 20877864 [TBL] [Abstract][Full Text] [Related]
25. Enzymatic site-selectivity enabled by structure-guided directed evolution. Wang JB; Li G; Reetz MT Chem Commun (Camb); 2017 Apr; 53(28):3916-3928. PubMed ID: 28294248 [TBL] [Abstract][Full Text] [Related]
29. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Lee SH; Choi DS; Kuk SK; Park CB Angew Chem Int Ed Engl; 2018 Jul; 57(27):7958-7985. PubMed ID: 29194901 [TBL] [Abstract][Full Text] [Related]
30. New generation of biocatalysts for organic synthesis. Nestl BM; Hammer SC; Nebel BA; Hauer B Angew Chem Int Ed Engl; 2014 Mar; 53(12):3070-95. PubMed ID: 24520044 [TBL] [Abstract][Full Text] [Related]
31. Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions. Chadha A; Venkataraman S; Preetha R; Padhi SK Bioorg Chem; 2016 Oct; 68():187-213. PubMed ID: 27544073 [TBL] [Abstract][Full Text] [Related]
32. Enzymes and proteins containing manganese: an overview. Crowley JD; Traynor DA; Weatherburn DC Met Ions Biol Syst; 2000; 37():209-78. PubMed ID: 10693136 [No Abstract] [Full Text] [Related]
33. Process considerations for the asymmetric synthesis of chiral amines using transaminases. Tufvesson P; Lima-Ramos J; Jensen JS; Al-Haque N; Neto W; Woodley JM Biotechnol Bioeng; 2011 Jul; 108(7):1479-93. PubMed ID: 21455931 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of chiral amines using redox biocatalysis. Grogan G Curr Opin Chem Biol; 2018 Apr; 43():15-22. PubMed ID: 29100099 [TBL] [Abstract][Full Text] [Related]
35. Some recent developments in the use of enzyme catalysed reactions in organic synthesis. Roberts SM; Turner NJ J Biotechnol; 1992 Feb; 22(3):227-44. PubMed ID: 1367981 [TBL] [Abstract][Full Text] [Related]
36. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Clouthier CM; Pelletier JN Chem Soc Rev; 2012 Feb; 41(4):1585-605. PubMed ID: 22234546 [TBL] [Abstract][Full Text] [Related]
37. Features and technical applications of ω-transaminases. Malik MS; Park ES; Shin JS Appl Microbiol Biotechnol; 2012 Jun; 94(5):1163-71. PubMed ID: 22555915 [TBL] [Abstract][Full Text] [Related]
38. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Yuan B; Yang D; Qu G; Turner NJ; Sun Z Chem Soc Rev; 2024 Jan; 53(1):227-262. PubMed ID: 38059509 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of enantiopure epoxides through biocatalytic approaches. Archelas A; Furstoss R Annu Rev Microbiol; 1997; 51():491-525. PubMed ID: 9343358 [TBL] [Abstract][Full Text] [Related]
40. Dicarbonyl reduction by single enzyme for the preparation of chiral diols. Chen Y; Chen C; Wu X Chem Soc Rev; 2012 Mar; 41(5):1742-53. PubMed ID: 22222186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]