These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24050321)

  • 1. Communication: Determination of the molecular structure of the simplest Criegee intermediate CH2OO.
    Nakajima M; Endo Y
    J Chem Phys; 2013 Sep; 139(10):101103. PubMed ID: 24050321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic characterization of the complex between water and the simplest Criegee intermediate CH2OO.
    Nakajima M; Endo Y
    J Chem Phys; 2014 Apr; 140(13):134302. PubMed ID: 24712788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO.
    Su YT; Huang YH; Witek HA; Lee YP
    Science; 2013 Apr; 340(6129):174-6. PubMed ID: 23580523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy of the simplest Criegee intermediate CH2OO: simulation of the first bands in its electronic and photoelectron spectra.
    Lee EP; Mok DK; Shallcross DE; Percival CJ; Osborn DL; Taatjes CA; Dyke JM
    Chemistry; 2012 Sep; 18(39):12411-23. PubMed ID: 22907644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed mechanism of the CH₂I + O₂ reaction: yield and self-reaction of the simplest Criegee intermediate CH₂OO.
    Ting WL; Chang CH; Lee YF; Matsui H; Lee YP; Lin JJ
    J Chem Phys; 2014 Sep; 141(10):104308. PubMed ID: 25217917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes.
    Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH
    J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substituent effects on the spectroscopic properties of Criegee intermediates.
    Trabelsi T; Kumar M; Francisco JS
    J Chem Phys; 2017 Oct; 147(16):164303. PubMed ID: 29096470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CH
    Mazarei E; Barker JR
    Phys Chem Chem Phys; 2022 Jan; 24(2):914-927. PubMed ID: 34913447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous infrared detection of the ICH2OO radical and Criegee intermediate CH2OO: the pressure dependence of the yield of CH2OO in the reaction CH2I + O2.
    Huang YH; Chen LW; Lee YP
    J Phys Chem Lett; 2015 Nov; 6(22):4610-5. PubMed ID: 26539815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Criegee intermediate-formic acid reaction explored by rotational spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18059-18064. PubMed ID: 31378795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet spectrum and photochemistry of the simplest Criegee intermediate CH2OO.
    Beames JM; Liu F; Lu L; Lester MI
    J Am Chem Soc; 2012 Dec; 134(49):20045-8. PubMed ID: 23206289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution quantum cascade laser spectroscopy of the simplest Criegee intermediate, CH
    Chang YP; Merer AJ; Chang HH; Jhang LJ; Chao W; Lin JJ
    J Chem Phys; 2017 Jun; 146(24):244302. PubMed ID: 28668015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Energy Curves for Formation of the CH
    Lakshmanan S; Spada RFK; Machado FBC; Hase WL
    J Phys Chem A; 2019 Oct; 123(41):8968-8975. PubMed ID: 31536345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring rate constants for reactions of the simplest Criegee intermediate (CH2OO) by monitoring the OH radical.
    Liu Y; Bayes KD; Sander SP
    J Phys Chem A; 2014 Jan; 118(4):741-7. PubMed ID: 24400595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communication: Ultraviolet photodissociation dynamics of the simplest Criegee intermediate CH2OO.
    Lehman JH; Li H; Beames JM; Lester MI
    J Chem Phys; 2013 Oct; 139(14):141103. PubMed ID: 24116596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity and internal dynamics in the Criegee intermediate CH
    Cabezas C; Daly AM; Endo Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119945. PubMed ID: 34020382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO).
    Li J; Carter S; Bowman JM; Dawes R; Xie D; Guo H
    J Phys Chem Lett; 2014 Jul; 5(13):2364-9. PubMed ID: 26279560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.
    Beames JM; Liu F; Lu L; Lester MI
    J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.