These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24050368)

  • 1. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores.
    Vitarelli MJ; Talaga DS
    J Chem Phys; 2013 Sep; 139(10):105101. PubMed ID: 24050368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model.
    Vitarelli MJ; Prakash S; Talaga DS
    Anal Chem; 2011 Jan; 83(2):533-41. PubMed ID: 21188971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of nanopore dimensions on the electrochemical properties of nanopore arrays studied by impedance spectroscopy.
    Kant K; Priest C; Shapter JG; Losic D
    Sensors (Basel); 2014 Nov; 14(11):21316-28. PubMed ID: 25393785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of protein unfolding with solid-state nanopores.
    Li J; Fologea D; Rollings R; Ledden B
    Protein Pept Lett; 2014 Mar; 21(3):256-65. PubMed ID: 24370259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore.
    Khan MS; Dosoky NS; Berdiev BK; Williams JD
    Eur Biophys J; 2016 Dec; 45(8):843-852. PubMed ID: 27480285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection.
    Lu Y; Zhang D; Zhang Q; Huang Y; Luo S; Yao Y; Li S; Liu Q
    Biosens Bioelectron; 2016 May; 79():251-7. PubMed ID: 26710343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Charge Density Inside a Silicon Nitride Nanopore.
    Lin K; Li Z; Tao Y; Li K; Yang H; Ma J; Li T; Sha J; Chen Y
    Langmuir; 2021 Sep; 37(35):10521-10528. PubMed ID: 34347494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein unfolding through nanopores.
    Oukhaled A; Pastoriza-Gallego M; Bacri L; Mathé J; Auvray L; Pelta J
    Protein Pept Lett; 2014 Mar; 21(3):266-74. PubMed ID: 24370253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium capture rates induce protein accumulation and enhanced adsorption to solid-state nanopores.
    Freedman KJ; Haq SR; Fletcher MR; Foley JP; Jemth P; Edel JB; Kim MJ
    ACS Nano; 2014 Dec; 8(12):12238-49. PubMed ID: 25426798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors.
    Brett CMA
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiology of Epithelial Sodium Channel (ENaC) Embedded in Supported Lipid Bilayer Using a Single Nanopore Chip.
    Khan MS; Dosoky NS; Mustafa G; Patel D; Berdiev B; Williams JD
    Langmuir; 2017 Nov; 33(47):13680-13688. PubMed ID: 29131643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.
    Kant K; Yu J; Priest C; Shapter JG; Losic D
    Analyst; 2014 Mar; 139(5):1134-40. PubMed ID: 24416759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Impedance Spectroscopy for Real-Time Detection of Lipid Membrane Damage Based on a Porous Self-Assembly Monolayer Support.
    Zhang M; Zhai Q; Wan L; Chen L; Peng Y; Deng C; Xiang J; Yan J
    Anal Chem; 2018 Jun; 90(12):7422-7427. PubMed ID: 29786428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to understand and interpret current flow in nanopore/electrode devices.
    Albrecht T
    ACS Nano; 2011 Aug; 5(8):6714-25. PubMed ID: 21790148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of unfolded protein translocation through a protein nanopore.
    Pastoriza-Gallego M; Breton MF; Discala F; Auvray L; Betton JM; Pelta J
    ACS Nano; 2014 Nov; 8(11):11350-60. PubMed ID: 25380310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Induced Surface Charge in Solid-State Nanopores.
    Yao Y; Wen C; Pham NH; Zhang SL
    Langmuir; 2020 Aug; 36(30):8874-8882. PubMed ID: 32646217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore.
    Cressiot B; Braselmann E; Oukhaled A; Elcock AH; Pelta J; Clark PL
    ACS Nano; 2015 Sep; 9(9):9050-61. PubMed ID: 26302243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking the Nanopores in a Layer of Nonconductive Nanoparticles: Dominant Effects Therein and Challenges for Electrochemical Impedimetric Biosensing.
    Sopoušek J; Věžník J; Skládal P; Lacina K
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14620-14628. PubMed ID: 32134623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.