These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24050398)

  • 1. Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels.
    Novak P; Gorelik J; Vivekananda U; Shevchuk AI; Ermolyuk YS; Bailey RJ; Bushby AJ; Moss GW; Rusakov DA; Klenerman D; Kullmann DM; Volynski KE; Korchev YE
    Neuron; 2013 Sep; 79(6):1067-77. PubMed ID: 24050398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A voltage-dependent and calcium-permeable ion channel in fused presynaptic terminals of Torpedo.
    Meir A; Rahamimoff R
    J Neurophysiol; 1996 May; 75(5):1858-70. PubMed ID: 8734585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic Na+ channels: locus, development, and recovery from inactivation at a high-fidelity synapse.
    Leão RM; Kushmerick C; Pinaud R; Renden R; Li GL; Taschenberger H; Spirou G; Levinson SR; von Gersdorff H
    J Neurosci; 2005 Apr; 25(14):3724-38. PubMed ID: 15814803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of voltage-activated ionic currents in the GnRH-containing terminalis nerve in transgenic zebrafish.
    Huang L; Li L
    Brain Res; 2011 Jan; 1367():43-9. PubMed ID: 20951681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of presynaptic function by a persistent Na(+) current.
    Huang H; Trussell LO
    Neuron; 2008 Dec; 60(6):975-9. PubMed ID: 19109905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5.
    Su SC; Seo J; Pan JQ; Samuels BA; Rudenko A; Ericsson M; Neve RL; Yue DT; Tsai LH
    Neuron; 2012 Aug; 75(4):675-87. PubMed ID: 22920258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons.
    Geiger JR; Jonas P
    Neuron; 2000 Dec; 28(3):927-39. PubMed ID: 11163277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.
    Miyazaki K; Ishizuka T; Yawo H
    Neuroscience; 2005; 136(4):1003-14. PubMed ID: 16226383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons.
    Engel D; Jonas P
    Neuron; 2005 Feb; 45(3):405-17. PubMed ID: 15694327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses.
    Vandael D; Okamoto Y; Borges-Merjane C; Vargas-Barroso V; Suter BA; Jonas P
    Nat Protoc; 2021 Jun; 16(6):2947-2967. PubMed ID: 33990799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal.
    Sun XP; Schlichter LC; Stanley EF
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):639-51. PubMed ID: 10420003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recordings from single neocortical nerve terminals reveal a nonselective cation channel activated by decreases in extracellular calcium.
    Smith SM; Bergsman JB; Harata NC; Scheller RH; Tsien RW
    Neuron; 2004 Jan; 41(2):243-56. PubMed ID: 14741105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats.
    Hige T; Fujiyoshi Y; Takahashi T
    Eur J Neurosci; 2006 Oct; 24(7):1955-66. PubMed ID: 17040476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the fidelity of neurotransmission by activity-dependent facilitation of presynaptic potassium currents.
    Yang YM; Wang W; Fedchyshyn MJ; Zhou Z; Ding J; Wang LY
    Nat Commun; 2014 Jul; 5():4564. PubMed ID: 25078759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels.
    Southan AP; Robertson B
    J Neurosci; 1998 Feb; 18(3):948-55. PubMed ID: 9437016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.
    Hu H; Shao LR; Chavoshy S; Gu N; Trieb M; Behrens R; Laake P; Pongs O; Knaus HG; Ottersen OP; Storm JF
    J Neurosci; 2001 Dec; 21(24):9585-97. PubMed ID: 11739569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action potential propagation into the presynaptic dendrites of rat mitral cells.
    Bischofberger J; Jonas P
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):359-65. PubMed ID: 9365910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to dismantle a detonator synapse.
    Pelkey KA; McBain CJ
    Neuron; 2005 Feb; 45(3):327-9. PubMed ID: 15694316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of presynaptic K ATP channels reduces the zinc-mediated posttetanic depression at hippocampal mossy fiber synapses.
    Matias CM; Saggau P; Quinta-Ferreira ME
    Brain Res; 2010 Mar; 1320():22-7. PubMed ID: 20097182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse.
    Bucurenciu I; Bischofberger J; Jonas P
    Nat Neurosci; 2010 Jan; 13(1):19-21. PubMed ID: 20010820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.