These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24050511)

  • 1. Instrumented hip implants: electric supply systems.
    Soares dos Santos MP; Ferreira JA; Ramos A; Simões JA; Morais R; Silva NM; Santos PM; Reis MJ; Oliveira T
    J Biomech; 2013 Oct; 46(15):2561-71. PubMed ID: 24050511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrumented hip joint replacements, femoral replacements and femoral fracture stabilizers.
    Soares dos Santos MP; Ferreira JA; Ramos A; Simões JA; Morais R; Silva NM; Santos PM; Reis MC; Oliveira T
    Expert Rev Med Devices; 2014 Nov; 11(6):617-35. PubMed ID: 25234709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instrumented knee joint implants: innovations and promising concepts.
    Torrão JN; Dos Santos MP; Ferreira JA
    Expert Rev Med Devices; 2015; 12(5):571-84. PubMed ID: 26202322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distant energy transfer for artificial human implants.
    Theodoridis MP; Mollov SV
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1931-8. PubMed ID: 16285397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Review of the design of power supply in retinal implants].
    Zhang Y; Peng C; Wang X; Hu N; Zhang S; Zheng E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):954-7. PubMed ID: 18788317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implantable power supply with an optically rechargeable lithium battery.
    Goto K; Nakagawa T; Nakamura O; Kawata S
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):830-3. PubMed ID: 11442295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency optimization of class-D biomedical inductive wireless power transfer systems by means of frequency adjustment.
    Schormans M; Valente V; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5473-6. PubMed ID: 26737530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.
    Shmilovitz D; Ozeri S; Wang CC; Spivak B
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a Piezoelectric Energy Harvesting System for an Energy-Autonomous Instrumented Total Hip Replacement: Experimental and Numerical Evaluation.
    Lange HE; Arbeiter N; Bader R; Kluess D
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy harvesting for the implantable biomedical devices: issues and challenges.
    Hannan MA; Mutashar S; Samad SA; Hussain A
    Biomed Eng Online; 2014 Jun; 13():79. PubMed ID: 24950601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hip endoprosthesis for in vivo measurement of joint force and temperature.
    Graichen F; Bergmann G; Rohlmann A
    J Biomech; 1999 Oct; 32(10):1113-7. PubMed ID: 10476850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conus hip prosthesis.
    Wagner H; Wagner M
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):213-21. PubMed ID: 11706545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry-based optimization of radio-frequency coils for powering neuroprosthetic implants.
    Kim J; Basham E; Pedrotti KD
    Med Biol Eng Comput; 2013 Feb; 51(1-2):123-34. PubMed ID: 23086205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic transcutaneous energy transfer for powering implanted devices.
    Ozeri S; Shmilovitz D
    Ultrasonics; 2010 May; 50(6):556-66. PubMed ID: 20031183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wear mechanisms in ceramic hip implants.
    Slonaker M; Goswami T
    J Surg Orthop Adv; 2004; 13(2):94-105. PubMed ID: 15281406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper bounds for energy harvesting in the region of the human head.
    Goll E; Zenner HP; Dalhoff E
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3097-103. PubMed ID: 21813361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless technologies for closed-loop retinal prostheses.
    Ng DC; Bai S; Yang J; Tran N; Skafidas E
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint.
    Westerhoff P; Graichen F; Bender A; Rohlmann A; Bergmann G
    Med Eng Phys; 2009 Mar; 31(2):207-13. PubMed ID: 18789749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-channel telemetry system for in vivo measurement of hip joint forces.
    Graichen F; Bergmann G
    J Biomed Eng; 1991 Sep; 13(5):370-4. PubMed ID: 1795503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.