These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 24050639)

  • 1. Photocatalytic properties of metal and non-metal doped novel sub 10nm titanium dioxide nanoparticles on methyl orange.
    McManamon C; Delaney P; Morris MA
    J Colloid Interface Sci; 2013 Dec; 411():169-72. PubMed ID: 24050639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.
    McManamon C; Holmes JD; Morris MA
    J Hazard Mater; 2011 Oct; 193():120-7. PubMed ID: 21813241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Mg-Doped TiO2 nanoparticles under different conditions and its photocatalytic activity.
    Behnajady MA; Alizade B; Modirshahla N
    Photochem Photobiol; 2011; 87(6):1308-14. PubMed ID: 21913938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies.
    Liu B; Wang X; Cai G; Wen L; Song Y; Zhao X
    J Hazard Mater; 2009 Sep; 169(1-3):1112-8. PubMed ID: 19500906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending photocatalytic activity of TiO2 nanoparticles to visible region of illumination by doping of cerium.
    Choudhury B; Borah B; Choudhury A
    Photochem Photobiol; 2012; 88(2):257-64. PubMed ID: 22220504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles.
    Shi JW; Zheng JT; Wu P
    J Hazard Mater; 2009 Jan; 161(1):416-22. PubMed ID: 18462878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation.
    Wang XH; Li JG; Kamiyama H; Moriyoshi Y; Ishigaki T
    J Phys Chem B; 2006 Apr; 110(13):6804-9. PubMed ID: 16570988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles.
    Shah SI; Li W; Huang CP; Jung O; Ni C
    Proc Natl Acad Sci U S A; 2002 Apr; 99 Suppl 2(Suppl 2):6482-6. PubMed ID: 11880607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The photocatalytic and antibacterial activities of neodymium and iodine doped TiO(2) nanoparticles.
    Jiang X; Yang L; Liu P; Li X; Shen J
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):69-74. PubMed ID: 20417077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of metal doping into Ce0.5Zr0.5O2 on photocatalytic activity of TiO2/Ce0.45Zr0.45M0.1OX (M=Y, La, Mn).
    Bo ZJ; Lintao ; Maochu G; Li WJ; Min LZ; Ming Z; Chen Y
    J Hazard Mater; 2007 May; 143(1-2):516-21. PubMed ID: 17084025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO(2) nanocrystalline.
    Xiao Q; Si Z; Zhang J; Xiao C; Tan X
    J Hazard Mater; 2008 Jan; 150(1):62-7. PubMed ID: 17540502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple solution combustion route for the preparation of metal-doped TiO2 nanoparticles and their photocatalytic degradation properties.
    Ni Y; Zhu Y; Ma X
    Dalton Trans; 2011 Apr; 40(14):3689-94. PubMed ID: 21369610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C.
    Wang D; Xiao L; Luo Q; Li X; An J; Duan Y
    J Hazard Mater; 2011 Aug; 192(1):150-9. PubMed ID: 21616590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure.
    Khataee AR; Pons MN; Zahraa O
    J Hazard Mater; 2009 Aug; 168(1):451-7. PubMed ID: 19278779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity.
    Xiang Q; Yu J; Jaroniec M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4853-61. PubMed ID: 21103562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zirconium-doped and silicon-doped TiO2 photocatalysts synthesis from ionic-liquid-like precursors.
    Estruga M; Domingo C; Domènech X; Ayllón JA
    J Colloid Interface Sci; 2010 Apr; 344(2):327-33. PubMed ID: 20138629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles.
    Chiou CH; Juang RS
    J Hazard Mater; 2007 Oct; 149(1):1-7. PubMed ID: 17433857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and photocatalytic studies of Mn doped TiO2 nanoparticles.
    Chauhan R; Kumar A; Chaudhary RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():256-64. PubMed ID: 22958977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations.
    Stengl V; Opluštil F; Němec T
    Photochem Photobiol; 2012; 88(2):265-76. PubMed ID: 22181810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.