BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

630 related articles for article (PubMed ID: 24051119)

  • 1. How we fall asleep: regional and temporal differences in electroencephalographic synchronization at sleep onset.
    Marzano C; Moroni F; Gorgoni M; Nobili L; Ferrara M; De Gennaro L
    Sleep Med; 2013 Nov; 14(11):1112-22. PubMed ID: 24051119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topographic mapping of EEG spectral power and coherence in delta activity during the transition from wakefulness to sleep.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):155-7. PubMed ID: 10459676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociated wake-like and sleep-like electro-cortical activity during sleep.
    Nobili L; Ferrara M; Moroni F; De Gennaro L; Russo GL; Campus C; Cardinale F; De Carli F
    Neuroimage; 2011 Sep; 58(2):612-9. PubMed ID: 21718789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.
    Spiess M; Bernardi G; Kurth S; Ringli M; Wehrle FM; Jenni OG; Huber R; Siclari F
    Neuroimage; 2018 Sep; 178():23-35. PubMed ID: 29758338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for differential human slow-wave activity regulation across the brain.
    Zavada A; Strijkstra AM; Boerema AS; Daan S; Beersma DG
    J Sleep Res; 2009 Mar; 18(1):3-10. PubMed ID: 19021858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Microsleep from the electro- and psychophysiological point of view].
    Faber J; Novák M; Svoboda P; Tatarinov V; Tichý T
    Sb Lek; 2003; 104(4):375-85. PubMed ID: 15320529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Features of cortex areas system interactions in the left and right brain hemospheres during different human sleep stages].
    Shepoval'nikov AN; Tsitseroshin MN; Zaĭtseva LG; Gal'perina EI
    Ross Fiziol Zh Im I M Sechenova; 2012 Oct; 98(10):1228-41. PubMed ID: 23401917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study.
    Siclari F; Bernardi G; Riedner BA; LaRocque JJ; Benca RM; Tononi G
    Sleep; 2014 Oct; 37(10):1621-37. PubMed ID: 25197810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal structure of phase synchronization of spontaneous alpha EEG activity.
    Ito J; Nikolaev AR; van Leeuwen C
    Biol Cybern; 2005 Jan; 92(1):54-60. PubMed ID: 15650899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theta oscillation in the human anterior cingulate cortex during all-night sleep: an electrocorticographic study.
    Nishida M; Hirai N; Miwakeichi F; Maehara T; Kawai K; Shimizu H; Uchida S
    Neurosci Res; 2004 Nov; 50(3):331-41. PubMed ID: 15488296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic cortical mapping of EEG sleep stages during daytime naps in normal subjects.
    Buchsbaum MS; Mendelson WB; Duncan WC; Coppola R; Kelsoe J; Gillin JC
    Sleep; 1982; 5(3):248-55. PubMed ID: 7134731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sleep EEG topography in children and adolescents shows sex differences in language areas.
    Ringli M; Kurth S; Huber R; Jenni OG
    Int J Psychophysiol; 2013 Aug; 89(2):241-5. PubMed ID: 23608523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electroencephalographic substratum of the awakening.
    Ferrara M; Curcio G; Fratello F; Moroni F; Marzano C; Pellicciari MC; Gennaro LD
    Behav Brain Res; 2006 Feb; 167(2):237-44. PubMed ID: 16242789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal EEG power spectral patterns during a short daytime nap.
    Luo Z; Honda K; Inoué S
    Psychiatry Clin Neurosci; 2001 Jun; 55(3):193-5. PubMed ID: 11422838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative topographic electroencephalographic mapping during drowsiness and sleep onset.
    Broughton R; Hasan J
    J Clin Neurophysiol; 1995 Jul; 12(4):372-86. PubMed ID: 7560024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalographic sleep inertia of the awakening brain.
    Marzano C; Ferrara M; Moroni F; De Gennaro L
    Neuroscience; 2011 Mar; 176():308-17. PubMed ID: 21167917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in electroencephalographic synchronization across nonrapid eye movement sleep in infants.
    Bes F; Fagioli I; Peirano P; Schulz H; Salzarulo P
    Sleep; 1994 Jun; 17(4):323-8. PubMed ID: 7973315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topographic mapping of electroencephalography coherence in hypnagogic state.
    Tanaka H; Hayashi M; Hori T
    Psychiatry Clin Neurosci; 1998 Apr; 52(2):147-8. PubMed ID: 9628119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.