These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24051139)

  • 1. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity.
    Inthavong K; Shang Y; Tu J
    Respir Physiol Neurobiol; 2014 Jan; 190():54-61. PubMed ID: 24051139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities.
    Shang Y; Dong J; Inthavong K; Tu J
    Inhal Toxicol; 2015; 27(13):694-705. PubMed ID: 26406158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nasal dosimetry of inhaled gases and particles: where do inhaled agents go in the nose?
    Kimbell JS
    Toxicol Pathol; 2006; 34(3):270-3. PubMed ID: 16698725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations for detailed airflow dynamics in a human nasal cavity.
    Wen J; Inthavong K; Tu J; Wang S
    Respir Physiol Neurobiol; 2008 Apr; 161(2):125-35. PubMed ID: 18378196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
    Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry.
    Croce C; Fodil R; Durand M; Sbirlea-Apiou G; Caillibotte G; Papon JF; Blondeau JR; Coste A; Isabey D; Louis B
    Ann Biomed Eng; 2006 Jun; 34(6):997-1007. PubMed ID: 16783655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
    Calmet H; Gambaruto AM; Bates AJ; Vázquez M; Houzeaux G; Doorly DJ
    Comput Biol Med; 2016 Feb; 69():166-80. PubMed ID: 26773939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity.
    Wang SM; Inthavong K; Wen J; Tu JY; Xue CL
    Respir Physiol Neurobiol; 2009 May; 166(3):142-51. PubMed ID: 19442930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages.
    Kimbell JS; Subramaniam RP
    Inhal Toxicol; 2001 May; 13(5):325-34. PubMed ID: 11295865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid computational fluid dynamics and physiologically based pharmacokinetic model for comparison of predicted tissue concentrations of acrylic acid and other vapors in the rat and human nasal cavities following inhalation exposure.
    Frederick CB; Gentry PR; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Inhal Toxicol; 2001 May; 13(5):359-76. PubMed ID: 11295868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient specific CFD models of nasal airflow: overview of methods and challenges.
    Kim SK; Na Y; Kim JI; Chung SK
    J Biomech; 2013 Jan; 46(2):299-306. PubMed ID: 23261244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity.
    Garcia GJ; Bailie N; Martins DA; Kimbell JS
    J Appl Physiol (1985); 2007 Sep; 103(3):1082-92. PubMed ID: 17569762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways.
    Frederick CB; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Toxicol Appl Pharmacol; 1998 Sep; 152(1):211-31. PubMed ID: 9772217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics simulations of inhaled nano- and microparticle deposition in the rhesus monkey nasal passages.
    Schroeter JD; Asgharian B; Price OT; McClellan GE
    Inhal Toxicol; 2013 Oct; 25(12):691-701. PubMed ID: 24102469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity.
    Shang Y; Inthavong K; Tu J
    J Biomech; 2019 Mar; 85():74-83. PubMed ID: 30685195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the assumption of steadiness of nasal cavity flow.
    Hörschler I; Schröder W; Meinke M
    J Biomech; 2010 Apr; 43(6):1081-5. PubMed ID: 20080240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometry and airflow dynamics analysis in the nasal cavity during inhalation.
    Inthavong K; Ma J; Shang Y; Dong J; Chetty ASR; Tu J; Frank-Ito D
    Clin Biomech (Bristol, Avon); 2019 Jun; 66():97-106. PubMed ID: 29074148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Three dimensional reconstruction of the nasal cavity structure and numerical simulation of airflow].
    Sun X; Yu S; Liu Y; Zheng Z; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1162-5. PubMed ID: 17228700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of numerical modelling of nasal airflow.
    Bailie N; Hanna B; Watterson J; Gallagher G
    Rhinology; 2006 Mar; 44(1):53-7. PubMed ID: 16550951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model.
    Shi H; Kleinstreuer C; Zhang Z
    J Biomech Eng; 2006 Oct; 128(5):697-706. PubMed ID: 16995756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.