These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 2405154)
1. Peptidases and peptide transport in renal brush-border membrane vesicles from rats with acute renal failure. Miyamoto Y; Ganapathy V; Leibach FH J Pharmacol Exp Ther; 1990 Jan; 252(1):98-103. PubMed ID: 2405154 [TBL] [Abstract][Full Text] [Related]
2. Transport of p-aminohippurate, tetraethylammonium and D-glucose in renal brush border membranes from rats with acute renal failure. Hori R; Takano M; Okano T; Inui K J Pharmacol Exp Ther; 1985 Jun; 233(3):776-81. PubMed ID: 2989496 [TBL] [Abstract][Full Text] [Related]
3. Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains. Tiruppathi C; Miyamoto Y; Ganapathy V; Roesel RA; Whitford GM; Leibach FH J Biol Chem; 1990 Jan; 265(3):1476-83. PubMed ID: 1967253 [TBL] [Abstract][Full Text] [Related]
4. Role of dipeptidyl peptidase IV in uptake of peptide nitrogen from beta-casomorphin in rabbit renal BBMV. Miyamoto Y; Ganapathy V; Barlas A; Neubert K; Barth A; Leibach FH Am J Physiol; 1987 Apr; 252(4 Pt 2):F670-7. PubMed ID: 2882693 [TBL] [Abstract][Full Text] [Related]
5. Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles. Goldman M; Yaari A; Doshnitzki Z; Cohen-Luria R; Moran A Arch Toxicol; 2006 Jul; 80(7):387-93. PubMed ID: 16482472 [TBL] [Abstract][Full Text] [Related]
6. Renal handling of drugs in renal failure. I: Differential effects of uranyl nitrate- and glycerol-induced acute renal failure on renal excretion of TEAB and PAH in rats. Lin JH; Lin TH J Pharmacol Exp Ther; 1988 Sep; 246(3):896-901. PubMed ID: 3418518 [TBL] [Abstract][Full Text] [Related]
7. Transport of peptides in renal brush border membrane vesicles. Suitability of 125I-labelled tyrosyl peptides as substrates. Tiruppathi C; Ganapathy V; Leibach FH Biochim Biophys Acta; 1991 Oct; 1069(1):14-20. PubMed ID: 1681904 [TBL] [Abstract][Full Text] [Related]
8. Transport of cefadroxil in rat kidney brush-border membranes is mediated by two electrogenic H+-coupled systems. Ries M; Wenzel U; Daniel H J Pharmacol Exp Ther; 1994 Dec; 271(3):1327-33. PubMed ID: 7996442 [TBL] [Abstract][Full Text] [Related]
9. Carrier-mediated transport of cefixime, a new cephalosporin antibiotic, via an organic anion transport system in the rat renal brush-border membrane. Tamai I; Tsuji A; Kin Y J Pharmacol Exp Ther; 1988 Jul; 246(1):338-44. PubMed ID: 3392660 [TBL] [Abstract][Full Text] [Related]
10. Na+ transport by human placental brush border membranes: are there several mechanisms? Brunette MG; Leclerc ; Claveau D J Cell Physiol; 1996 Apr; 167(1):72-80. PubMed ID: 8698842 [TBL] [Abstract][Full Text] [Related]
11. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane. Aito-Inoue M; Lackeyram D; Fan MZ; Sato K; Mine Y J Pept Sci; 2007 Jul; 13(7):468-74. PubMed ID: 17554807 [TBL] [Abstract][Full Text] [Related]
12. Interaction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes. Takahashi K; Nakamura N; Terada T; Okano T; Futami T; Saito H; Inui KI J Pharmacol Exp Ther; 1998 Aug; 286(2):1037-42. PubMed ID: 9694966 [TBL] [Abstract][Full Text] [Related]
13. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine. Tsuji A; Terasaki T; Tamai I; Hirooka H J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815 [TBL] [Abstract][Full Text] [Related]
15. Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles. Miyauchi S; Abbot EL; Zhuang L; Subramanian R; Ganapathy V; Thwaites DT Mol Membr Biol; 2005; 22(6):549-59. PubMed ID: 16373326 [TBL] [Abstract][Full Text] [Related]
16. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylprolylalanine in renal brush-border membrane vesicles. Tiruppathi C; Ganapathy V; Leibach FH J Biol Chem; 1990 Sep; 265(25):14870-4. PubMed ID: 2394703 [TBL] [Abstract][Full Text] [Related]
17. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential. Daniel H; Morse EL; Adibi SA J Biol Chem; 1991 Oct; 266(30):19917-24. PubMed ID: 1939055 [TBL] [Abstract][Full Text] [Related]
18. Renal handling of alendronate in rats. An uncharacterized renal transport system. Lin JH; Chen IW; Deluna FA; Hichens M Drug Metab Dispos; 1992; 20(4):608-13. PubMed ID: 1356743 [TBL] [Abstract][Full Text] [Related]
19. Moment analysis of drug disposition in kidney. III: Transport of p-aminohippurate and tetraethylammonium in the perfused kidney isolated from uranyl nitrate-induced acute renal failure rats. Tanigawara Y; Saito Y; Aiba T; Ohoka K; Kamiya A; Hori R J Pharm Sci; 1990 Mar; 79(3):249-56. PubMed ID: 2338636 [TBL] [Abstract][Full Text] [Related]
20. [Characteristics of oxalate transport in the rat renal brush border membrane vesicles]. Nishibuchi S; Okada Y; Kawamura J; Yoshida O Nihon Jinzo Gakkai Shi; 1987 Nov; 29(11):1347-54. PubMed ID: 3450895 [No Abstract] [Full Text] [Related] [Next] [New Search]