These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24052144)

  • 1. Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor.
    Uçüncü E; Tunca E; Fikirdeşici S; Ozkan AD; Altindağ A
    Bull Environ Contam Toxicol; 2013 Nov; 91(5):600-4. PubMed ID: 24052144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.).
    Uçüncü E; Tunca E; Fikirdeşici S; Altindağ A
    Int J Phytoremediation; 2013; 15(4):376-84. PubMed ID: 23488003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah MA
    Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper.
    Monferrán MV; Pignata ML; Wunderlin DA
    Environ Pollut; 2012 Feb; 161():15-22. PubMed ID: 22230062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).
    Demirezen Yilmaz D; Akbulut H
    Int J Phytoremediation; 2011; 13(10):970-84. PubMed ID: 21972565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey.
    Sasmaz M; Arslan Topal EI; Obek E; Sasmaz A
    J Environ Manage; 2015 Nov; 163():246-53. PubMed ID: 26332457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation potential of Lemna minor L. for heavy metals.
    Bokhari SH; Ahmad I; Mahmood-Ul-Hassan M; Mohammad A
    Int J Phytoremediation; 2016; 18(1):25-32. PubMed ID: 26114480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed).
    Sobrino AS; Miranda MG; Alvarez C; Quiroz A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of the coalmine effluent.
    Bharti S; Kumar Banerjee T
    Ecotoxicol Environ Saf; 2012 Jul; 81():36-42. PubMed ID: 22571948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic uptake by Lemna minor in hydroponic system.
    Goswami C; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1221-7. PubMed ID: 24933913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of the toxic effluent generated during recovery of precious metals from polymetallic sea nodules.
    Vaseem H; Banerjee TK
    Int J Phytoremediation; 2012; 14(5):457-66. PubMed ID: 22567724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying effect of cell wall's carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution.
    Rakhshaee R; Giahi M; Pourahmad A
    J Hazard Mater; 2009 Apr; 163(1):165-73. PubMed ID: 18722059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor.
    Rofkar JR; Dwyer DF; Bobak DM
    Int J Phytoremediation; 2014; 16(2):155-66. PubMed ID: 24912207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal concentrations in the groundwater in Birjand flood plain, Iran.
    Mansouri B; Salehi J; Etebari B; Moghaddam HK
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):138-42. PubMed ID: 22484328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasible Green Strategy for the Quantitative Bioaccumulation of Heavy Metals by Lemna minor: Application of the Self-Thinning Law.
    Sun Y; Gao P; Ding N; Zou X; Chen Y; Li T; Cuiting W; Xu X; Chen T; Ruan H
    Bull Environ Contam Toxicol; 2020 Feb; 104(2):282-287. PubMed ID: 31858152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor.
    Kalčíková G; Zupančič M; Jemec A; Gotvajn AŽ
    Chemosphere; 2016 Mar; 147():311-7. PubMed ID: 26766370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations in metal release profiles following sorption by Lemna minor.
    Üçüncü Tunca E; Ölmez TT; Özkan AD; Altındağ A; Tunca E; Tekinay T
    Int J Phytoremediation; 2016 Aug; 18(8):785-93. PubMed ID: 26709546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge.
    Shukla OP; Juwarkar AA; Singh SK; Khan S; Rai UN
    Waste Manag; 2011 Jan; 31(1):115-23. PubMed ID: 20889325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.