BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 24052352)

  • 1. Confocal microscopy of cardiac myocytes.
    Price RL; Haley ST; Bullard T; Davis J; Borg TK; Terracio L
    Methods Mol Biol; 2014; 1075():185-99. PubMed ID: 24052352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The collagenous microstructure of cardiac ventricular trabeculae carneae.
    Sands G; Goo S; Gerneke D; LeGrice I; Loiselle D
    J Struct Biol; 2011 Jan; 173(1):110-6. PubMed ID: 20599511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological properties of mouse bone marrow c-kit+ cells co-cultured onto neonatal cardiac myocytes.
    Lagostena L; Avitabile D; De Falco E; Orlandi A; Grassi F; Iachininoto MG; Ragone G; Fucile S; Pompilio G; Eusebi F; Pesce M; Capogrossi MC
    Cardiovasc Res; 2005 Jun; 66(3):482-92. PubMed ID: 15914113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo imaging of nitric oxide and hydrogen peroxide in cardiac myocytes.
    Sartoretto JL; Kalwa H; Romero N; Michel T
    Methods Enzymol; 2013; 528():61-78. PubMed ID: 23849859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-micrometer anatomical models of the sarcolemma of cardiac myocytes based on confocal imaging.
    Sachse FB; Savio-Galimberti E; Goldhaber JI; Bridge JH
    Pac Symp Biocomput; 2008; ():390-401. PubMed ID: 18229702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relationship between myocyte proliferation and cardiac function in adult rats with heart failure].
    Li H; He JG; Liu QH; Deng DJ; Wu ZJ; Guo WY; Ding JF; Cheng XS
    Zhonghua Yi Xue Za Zhi; 2006 Jan; 86(2):102-5. PubMed ID: 16620714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of cardiac myocytes.
    Ianoul A; Grant DD; Rouleau Y; Bani-Yaghoub M; Johnston LJ; Pezacki JP
    Nat Chem Biol; 2005 Sep; 1(4):196-202. PubMed ID: 16408035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption in the tropomodulin1 (Tmod1) gene compromises cardiomyocyte development in murine embryonic stem cells by arresting myofibril maturation.
    Ono Y; Schwach C; Antin PB; Gregorio CC
    Dev Biol; 2005 Jun; 282(2):336-48. PubMed ID: 15950601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration.
    Kofidis T; de Bruin JL; Yamane T; Balsam LB; Lebl DR; Swijnenburg RJ; Tanaka M; Weissman IL; Robbins RC
    Stem Cells; 2004; 22(7):1239-45. PubMed ID: 15579642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-beating HL-1 cells for confocal microscopy: application to mitochondrial functions during cardiac preconditioning.
    Pelloux S; Robillard J; Ferrera R; Bilbaut A; Ojeda C; Saks V; Ovize M; Tourneur Y
    Prog Biophys Mol Biol; 2006; 90(1-3):270-98. PubMed ID: 16140363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.
    Lasher RA; Hitchcock RW; Sachse FB
    IEEE Trans Med Imaging; 2009 Aug; 28(8):1156-64. PubMed ID: 19336297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of conjunctival goblet cell actin cytoskeleton and mucin content in tissue whole mounts.
    Gipson IK; Tisdale AS
    Exp Eye Res; 1997 Sep; 65(3):407-15. PubMed ID: 9299177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures.
    Westfall MV; Pasyk KA; Yule DI; Samuelson LC; Metzger JM
    Cell Motil Cytoskeleton; 1997; 36(1):43-54. PubMed ID: 8986376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes.
    Ahuja P; Perriard E; Perriard JC; Ehler E
    J Cell Sci; 2004 Jul; 117(Pt 15):3295-306. PubMed ID: 15226401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural localization of filamentous actin within neuronal interphase nuclei in situ.
    Amankwah KS; De Boni U
    Exp Cell Res; 1994 Feb; 210(2):315-25. PubMed ID: 8299727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free biochemical imaging of heart tissue with high-speed spontaneous Raman microscopy.
    Ogawa M; Harada Y; Yamaoka Y; Fujita K; Yaku H; Takamatsu T
    Biochem Biophys Res Commun; 2009 May; 382(2):370-4. PubMed ID: 19285035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes.
    Xu M; Wani M; Dai YS; Wang J; Yan M; Ayub A; Ashraf M
    Circulation; 2004 Oct; 110(17):2658-65. PubMed ID: 15492307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations.
    Wollesen T; Loesel R; Wanninger A
    J Neurosci Methods; 2009 Apr; 179(1):63-7. PubMed ID: 19428513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for obtaining semi-thin cross sections of the Drosophila heart and their labeling with multiple antibodies.
    Harpaz N; Volk T
    Methods; 2012 Jan; 56(1):63-8. PubMed ID: 21963658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avian precardiac endoderm/mesoderm induces cardiac myocyte differentiation in murine embryonic stem cells.
    Rudy-Reil D; Lough J
    Circ Res; 2004 Jun; 94(12):e107-16. PubMed ID: 15192018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.