These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 2405252)
1. Genetic and biochemical evaluation of eucaryotic membrane protein topology: multiple transmembrane domains of Saccharomyces cerevisiae 3-hydroxy-3-methylglutaryl coenzyme A reductase. Sengstag C; Stirling C; Schekman R; Rine J Mol Cell Biol; 1990 Feb; 10(2):672-80. PubMed ID: 2405252 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Basson ME; Thorsness M; Finer-Moore J; Stroud RM; Rine J Mol Cell Biol; 1988 Sep; 8(9):3797-808. PubMed ID: 3065625 [TBL] [Abstract][Full Text] [Related]
3. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum. Roitelman J; Olender EH; Bar-Nun S; Dunn WA; Simoni RD J Cell Biol; 1992 Jun; 117(5):959-73. PubMed ID: 1374417 [TBL] [Abstract][Full Text] [Related]
4. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Basson ME; Thorsness M; Rine J Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5563-7. PubMed ID: 3526336 [TBL] [Abstract][Full Text] [Related]
5. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Hampton RY; Gardner RG; Rine J Mol Biol Cell; 1996 Dec; 7(12):2029-44. PubMed ID: 8970163 [TBL] [Abstract][Full Text] [Related]
6. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Dimster-Denk D; Thorsness MK; Rine J Mol Biol Cell; 1994 Jun; 5(6):655-65. PubMed ID: 7949422 [TBL] [Abstract][Full Text] [Related]
7. The intracellular targeting and membrane topology of 3-hydroxy-3-methylglutaryl-CoA reductase. Olender EH; Simon RD J Biol Chem; 1992 Feb; 267(6):4223-35. PubMed ID: 1740462 [TBL] [Abstract][Full Text] [Related]
8. Mutational analysis of the karmellae-inducing signal in Hmg1p, a yeast HMG-CoA reductase isozyme. Profant DA; Roberts CJ; Wright RL Yeast; 2000 Jun; 16(9):811-27. PubMed ID: 10861905 [TBL] [Abstract][Full Text] [Related]
9. Targeting of heterologous membrane proteins into proliferated internal membranes in Saccharomyces cerevisiae. Wittekindt NE; Würgler FE; Sengstag C Yeast; 1995 Aug; 11(10):913-28. PubMed ID: 8533467 [TBL] [Abstract][Full Text] [Related]
10. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations. Koning AJ; Roberts CJ; Wright RL Mol Biol Cell; 1996 May; 7(5):769-89. PubMed ID: 8744950 [TBL] [Abstract][Full Text] [Related]
11. The role of the 3-hydroxy 3-methylglutaryl coenzyme A reductase cytosolic domain in karmellae biogenesis. Profant DA; Roberts CJ; Koning AJ; Wright RL Mol Biol Cell; 1999 Oct; 10(10):3409-23. PubMed ID: 10512876 [TBL] [Abstract][Full Text] [Related]
12. The membrane domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto beta-galactosidase. Skalnik DG; Narita H; Kent C; Simoni RD J Biol Chem; 1988 May; 263(14):6836-41. PubMed ID: 2834394 [TBL] [Abstract][Full Text] [Related]
13. Positive and negative transcriptional control by heme of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Thorsness M; Schafer W; D'Ari L; Rine J Mol Cell Biol; 1989 Dec; 9(12):5702-12. PubMed ID: 2685574 [TBL] [Abstract][Full Text] [Related]
14. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Learned RM; Fink GR Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2779-83. PubMed ID: 2649893 [TBL] [Abstract][Full Text] [Related]
15. Identification of the sequences in HMG-CoA reductase required for karmellae assembly. Parrish ML; Sengstag C; Rine JD; Wright RL Mol Biol Cell; 1995 Nov; 6(11):1535-47. PubMed ID: 8589454 [TBL] [Abstract][Full Text] [Related]
16. Molecular, functional and evolutionary characterization of the gene encoding HMG-CoA reductase in the fission yeast, Schizosaccharomyces pombe. Lum PY; Edwards S; Wright R Yeast; 1996 Sep; 12(11):1107-24. PubMed ID: 8896278 [TBL] [Abstract][Full Text] [Related]
17. Identifying mutations in duplicated functions in Saccharomyces cerevisiae: recessive mutations in HMG-CoA reductase genes. Basson ME; Moore RL; O'Rear J; Rine J Genetics; 1987 Dec; 117(4):645-55. PubMed ID: 2828155 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning and sequence analysis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from the human parasite Schistosoma mansoni. Rajkovic A; Simonsen JN; Davis RE; Rottman FM Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8217-21. PubMed ID: 2813388 [TBL] [Abstract][Full Text] [Related]
19. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Donald KA; Hampton RY; Fritz IB Appl Environ Microbiol; 1997 Sep; 63(9):3341-4. PubMed ID: 9292983 [TBL] [Abstract][Full Text] [Related]
20. Genetic and biochemical analysis of the transmembrane domain of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase. Re EB; Brugger S; Learned M J Cell Biochem; 1997 Jun; 65(4):443-59. PubMed ID: 9178095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]