These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: A tool for cardiac safety assessment. Zhang X; Guo L; Zeng H; White SL; Furniss M; Balasubramanian B; Lis E; Lagrutta A; Sannajust F; Zhao LL; Xi B; Wang X; Davis M; Abassi YA J Pharmacol Toxicol Methods; 2016; 81():201-16. PubMed ID: 27282640 [TBL] [Abstract][Full Text] [Related]
17. An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities. Koci B; Luerman G; Duenbostell A; Kettenhofen R; Bohlen H; Coyle L; Knight B; Ku W; Volberg W; Woska JR; Brown MP Toxicol Appl Pharmacol; 2017 Aug; 329():121-127. PubMed ID: 28546047 [TBL] [Abstract][Full Text] [Related]
18. High Throughput Measurement of Ca++ Dynamics in Human Stem Cell-Derived Cardiomyocytes by Kinetic Image Cytometery: A Cardiac Risk Assessment Characterization Using a Large Panel of Cardioactive and Inactive Compounds. Lu HR; Whittaker R; Price JH; Vega R; Pfeiffer ER; Cerignoli F; Towart R; Gallacher DJ Toxicol Sci; 2015 Dec; 148(2):503-16. PubMed ID: 26358003 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive in vitro cardiac safety assessment using human stem cell technology: Overview of CSAHi HEART initiative. Takasuna K; Asakura K; Araki S; Ando H; Kazusa K; Kitaguchi T; Kunimatsu T; Suzuki S; Miyamoto N J Pharmacol Toxicol Methods; 2017; 83():42-54. PubMed ID: 27646297 [TBL] [Abstract][Full Text] [Related]
20. Drug-induced functional cardiotoxicity screening in stem cell-derived human and mouse cardiomyocytes: effects of reference compounds. Himmel HM J Pharmacol Toxicol Methods; 2013; 68(1):97-111. PubMed ID: 23702537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]