These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24052927)

  • 1. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department.
    Azeez D; Ali MA; Gan KB; Saiboon I
    Springerplus; 2013; 2():416. PubMed ID: 24052927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of multilayer perceptron neural networks and adaptive neuro-fuzzy inference systems for the mass transfer modeling of Echium amoenum Fisch. & C. A. Mey.
    Chasiotis V; Nadi F; Filios A
    J Sci Food Agric; 2021 Dec; 101(15):6514-6524. PubMed ID: 34000064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive neuro-fuzzy inference system (ANFIS): a new approach to predictive modeling in QSAR applications: a study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists.
    Buyukbingol E; Sisman A; Akyildiz M; Alparslan FN; Adejare A
    Bioorg Med Chem; 2007 Jun; 15(12):4265-82. PubMed ID: 17434739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Attendance Demand in European Football Games: Comparison of ANFIS, Fuzzy Logic, and ANN.
    Şahin M; Erol R
    Comput Intell Neurosci; 2018; 2018():5714872. PubMed ID: 30158960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ANFIS and ANN modeling for predicting the water absorption behavior of polyurethane treated polyester fabric.
    Sarkar J; Prottoy ZH; Bari MT; Al Faruque MA
    Heliyon; 2021 Sep; 7(9):e08000. PubMed ID: 34585015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production.
    Taheri E; Amin MM; Fatehizadeh A; Rezakazemi M; Aminabhavi TM
    J Environ Manage; 2021 Aug; 292():112759. PubMed ID: 33984638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viability of two adaptive fuzzy systems based on fuzzy c means and subtractive clustering methods for modeling Cadmium in groundwater resources.
    Jafarzade N; Kisi O; Yousefi M; Baziar M; Oskoei V; Marufi N; Mohammadi AA
    Heliyon; 2023 Aug; 9(8):e18415. PubMed ID: 37520981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.
    Heddam S
    Environ Monit Assess; 2014 Jan; 186(1):597-619. PubMed ID: 24057665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.
    Wang HY; Wen CF; Chiu YH; Lee IN; Kao HY; Lee IC; Ho WH
    PLoS One; 2013; 8(5):e64995. PubMed ID: 23705023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting High-Strength Concrete's Compressive Strength: A Comparative Study of Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, and Response Surface Methodology.
    Li T; Yang J; Jiang P; AlAteah AH; Alsubeai A; Alfares AM; Sufian M
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of municipal solid waste generation: an investigation of the effect of clustering techniques and parameters on ANFIS model performance.
    Adeleke O; Akinlabi SA; Jen TC; Dunmade I
    Environ Technol; 2022 Apr; 43(11):1634-1647. PubMed ID: 33143558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction.
    Subasi A
    Comput Biol Med; 2007 Feb; 37(2):227-44. PubMed ID: 16480706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy Logic, Artificial Neural Network, and Adaptive Neuro-Fuzzy Inference Methodology for Soft Computation and Modeling of Ion Sensing Data of a Terpyridyl-Imidazole Based Bifunctional Receptor.
    Sahoo A; Baitalik S
    Front Chem; 2022; 10():864363. PubMed ID: 35402382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A COVID-19 forecasting system for hospital needs using ANFIS and LSTM models: A graphical user interface unit.
    Shafiekhani S; Namdar P; Rafiei S
    Digit Health; 2022; 8():20552076221085057. PubMed ID: 35355809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Forecasting of Malaria Parasite Using Machine Learning Models: MLR, ANN, ANFIS and Random Forest.
    Uzun Ozsahin D; Duwa BB; Ozsahin I; Uzun B
    Diagnostics (Basel); 2024 Feb; 14(4):. PubMed ID: 38396424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of different heuristic and decomposition techniques for river stage modeling.
    Seo Y; Kim S; Singh VP
    Environ Monit Assess; 2018 Jun; 190(7):392. PubMed ID: 29892912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models.
    Ghasemi M; Hasani Zonoozi M; Rezania N; Saadatpour M
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72839-72852. PubMed ID: 35616836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.