These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24053255)

  • 21. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model.
    Cortez PP; Silva MA; Santos M; Armada-da-Silva P; Afonso A; Lopes MA; Santos JD; Maurício AC
    J Biomater Appl; 2012 Aug; 27(2):201-17. PubMed ID: 21602251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo evaluation of resorbable bone graft substitutes in mandibular sockets of the beagle.
    Shih TC; Chang WJ; Yang JC; Feng SW; Lin CT; Teng NC
    J Biomed Mater Res A; 2012 Oct; 100(10):2726-31. PubMed ID: 22623380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium sulfates: what is the evidence?
    Beuerlein MJ; McKee MD
    J Orthop Trauma; 2010 Mar; 24 Suppl 1():S46-51. PubMed ID: 20182236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite.
    Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T
    Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of antibiotic infused calcium sulfate/hydroxyapatite (CAS/HA) insets on implant-associated osteitis in a femur fracture model in mice.
    Oezel L; Büren C; Scholz AO; Windolf J; Windolf CD
    PLoS One; 2019; 14(3):e0213590. PubMed ID: 30870491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.
    Nilsson M; Wang JS; Wielanek L; Tanner KE; Lidgren L
    J Bone Joint Surg Br; 2004 Jan; 86(1):120-5. PubMed ID: 14765879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by the addition of glass.
    So K; Fujibayashi S; Neo M; Anan Y; Ogawa T; Kokubo T; Nakamura T
    Biomaterials; 2006 Sep; 27(27):4738-44. PubMed ID: 16753209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo evaluation of resorbable bone graft substitutes in beagles: histological properties.
    Shih TC; Teng NC; Wang PD; Lin CT; Yang JC; Fong SW; Lin HK; Chang WJ
    J Biomed Mater Res A; 2013 Aug; 101(8):2405-11. PubMed ID: 23526767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A composite material model for improved bone formation.
    Scaglione S; Lazzarini E; Ilengo C; Quarto R
    J Tissue Eng Regen Med; 2010 Oct; 4(7):505-13. PubMed ID: 20213628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in research applications of nanophase hydroxyapatite.
    Fox K; Tran PA; Tran N
    Chemphyschem; 2012 Jul; 13(10):2495-506. PubMed ID: 22467406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of bone-graft substitutes in large bone defects: any specific needs?
    Calori GM; Mazza E; Colombo M; Ripamonti C
    Injury; 2011 Sep; 42 Suppl 2():S56-63. PubMed ID: 21752369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: an experimental study in the dog mandible.
    Han X; Liu H; Wang D; Su F; Zhang Y; Zhou W; Li S; Yang R
    Clin Implant Dent Relat Res; 2013 Jun; 15(3):390-401. PubMed ID: 21745333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections.
    Rauschmann MA; Wichelhaus TA; Stirnal V; Dingeldein E; Zichner L; Schnettler R; Alt V
    Biomaterials; 2005 May; 26(15):2677-84. PubMed ID: 15585271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of adding resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits.
    al Ruhaimi KA
    Int J Oral Maxillofac Implants; 2000; 15(6):859-64. PubMed ID: 11151586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation.
    Ohba S; Wang W; Itoh S; Takagi Y; Nagai A; Yamashita K
    J Biomed Mater Res A; 2012 Nov; 100(11):3167-76. PubMed ID: 22847859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium sulfate use in dentistry.
    Mamidwar
    Dent Implantol Update; 2009 May; 20(5):38-40. PubMed ID: 19453094
    [No Abstract]   [Full Text] [Related]  

  • 37. Improvement on the performance of bone regeneration of calcium sulfate hemihydrate by adding mineralized collagen.
    Liu HY; Liu X; Zhang LP; Ai HJ; Cui FZ
    Tissue Eng Part A; 2010 Jun; 16(6):2075-84. PubMed ID: 20136401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of a calcium sulfate implant with calcium sulfate barrier on periodontal healing in 3-wall intrabony defects in dogs.
    Kim CK; Kim HY; Chai JK; Cho KS; Moon IS; Choi SH; Sottosanti JS; Wikesjö UM
    J Periodontol; 1998 Sep; 69(9):982-8. PubMed ID: 9776026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apatite-coated porous poly(lactic-co-glycolic acid) microspheres as an injectable bone substitute.
    Lee TJ; Kang SW; Bhang SH; Kang JM; Kim BS
    J Biomater Sci Polym Ed; 2010; 21(5):635-45. PubMed ID: 20338097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.